Metamath Proof Explorer


Theorem qinioo

Description: The rational numbers are dense in RR . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qinioo.a φ A *
qinioo.b φ B *
Assertion qinioo φ A B = B A

Proof

Step Hyp Ref Expression
1 qinioo.a φ A *
2 qinioo.b φ B *
3 simplr φ A B = ¬ B A A B =
4 1 2 xrltnled φ A < B ¬ B A
5 4 biimpar φ ¬ B A A < B
6 1 adantr φ A < B A *
7 2 adantr φ A < B B *
8 simpr φ A < B A < B
9 qbtwnxr A * B * A < B q A < q q < B
10 6 7 8 9 syl3anc φ A < B q A < q q < B
11 1 ad2antrr φ q A < q q < B A *
12 2 ad2antrr φ q A < q q < B B *
13 qre q q
14 13 ad2antlr φ q A < q q < B q
15 simprl φ q A < q q < B A < q
16 simprr φ q A < q q < B q < B
17 11 12 14 15 16 eliood φ q A < q q < B q A B
18 17 ex φ q A < q q < B q A B
19 18 adantlr φ A < B q A < q q < B q A B
20 19 reximdva φ A < B q A < q q < B q q A B
21 10 20 mpd φ A < B q q A B
22 inn0 A B q q A B
23 21 22 sylibr φ A < B A B
24 5 23 syldan φ ¬ B A A B
25 24 neneqd φ ¬ B A ¬ A B =
26 25 adantlr φ A B = ¬ B A ¬ A B =
27 3 26 condan φ A B = B A
28 ioo0 A * B * A B = B A
29 1 2 28 syl2anc φ A B = B A
30 29 biimpar φ B A A B =
31 ineq2 A B = A B =
32 in0 =
33 31 32 eqtrdi A B = A B =
34 30 33 syl φ B A A B =
35 27 34 impbida φ A B = B A