Metamath Proof Explorer


Theorem qinioo

Description: The rational numbers are dense in RR . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qinioo.a φA*
qinioo.b φB*
Assertion qinioo φAB=BA

Proof

Step Hyp Ref Expression
1 qinioo.a φA*
2 qinioo.b φB*
3 simplr φAB=¬BAAB=
4 1 2 xrltnled φA<B¬BA
5 4 biimpar φ¬BAA<B
6 1 adantr φA<BA*
7 2 adantr φA<BB*
8 simpr φA<BA<B
9 qbtwnxr A*B*A<BqA<qq<B
10 6 7 8 9 syl3anc φA<BqA<qq<B
11 1 ad2antrr φqA<qq<BA*
12 2 ad2antrr φqA<qq<BB*
13 qre qq
14 13 ad2antlr φqA<qq<Bq
15 simprl φqA<qq<BA<q
16 simprr φqA<qq<Bq<B
17 11 12 14 15 16 eliood φqA<qq<BqAB
18 17 ex φqA<qq<BqAB
19 18 adantlr φA<BqA<qq<BqAB
20 19 reximdva φA<BqA<qq<BqqAB
21 10 20 mpd φA<BqqAB
22 inn0 ABqqAB
23 21 22 sylibr φA<BAB
24 5 23 syldan φ¬BAAB
25 24 neneqd φ¬BA¬AB=
26 25 adantlr φAB=¬BA¬AB=
27 3 26 condan φAB=BA
28 ioo0 A*B*AB=BA
29 1 2 28 syl2anc φAB=BA
30 29 biimpar φBAAB=
31 ineq2 AB=AB=
32 in0 =
33 31 32 eqtrdi AB=AB=
34 30 33 syl φBAAB=
35 27 34 impbida φAB=BA