| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrn.i |  | 
						
							| 2 |  | qndenserrn.j |  | 
						
							| 3 | 2 | rrxtop |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 |  | reex |  | 
						
							| 6 |  | qssre |  | 
						
							| 7 |  | mapss |  | 
						
							| 8 | 5 6 7 | mp2an |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 1 10 11 | rrxbasefi |  | 
						
							| 13 | 12 | eqcomd |  | 
						
							| 14 |  | rrxtps |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 11 15 | tpsuni |  | 
						
							| 17 | 1 14 16 | 3syl |  | 
						
							| 18 | 2 | unieqi |  | 
						
							| 19 | 18 | eqcomi |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 13 17 20 | 3eqtrd |  | 
						
							| 22 | 9 21 | sseqtrd |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 | clsss3 |  | 
						
							| 25 | 4 22 24 | syl2anc |  | 
						
							| 26 | 21 | eqcomd |  | 
						
							| 27 | 25 26 | sseqtrd |  | 
						
							| 28 | 1 | ad2antrr |  | 
						
							| 29 |  | id |  | 
						
							| 30 | 29 2 | eleqtrdi |  | 
						
							| 31 | 30 | ad2antlr |  | 
						
							| 32 |  | ne0i |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 28 15 31 33 | qndenserrnopn |  | 
						
							| 35 |  | df-rex |  | 
						
							| 36 | 34 35 | sylib |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 |  | simpl |  | 
						
							| 39 | 37 38 | elind |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 | 40 | eximdv |  | 
						
							| 42 | 36 41 | mpd |  | 
						
							| 43 |  | n0 |  | 
						
							| 44 | 42 43 | sylibr |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 | 45 | adantlr |  | 
						
							| 47 | 46 | ralrimiva |  | 
						
							| 48 | 4 | adantr |  | 
						
							| 49 | 22 | adantr |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 21 | adantr |  | 
						
							| 52 | 50 51 | eleqtrd |  | 
						
							| 53 | 23 | elcls |  | 
						
							| 54 | 48 49 52 53 | syl3anc |  | 
						
							| 55 | 47 54 | mpbird |  | 
						
							| 56 | 27 55 | eqelssd |  |