Metamath Proof Explorer


Theorem qtopcld

Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Assertion qtopcld JTopOnXF:XontoYAClsdJqTopFAYF-1AClsdJ

Proof

Step Hyp Ref Expression
1 qtoptopon JTopOnXF:XontoYJqTopFTopOnY
2 topontop JqTopFTopOnYJqTopFTop
3 eqid JqTopF=JqTopF
4 3 iscld JqTopFTopAClsdJqTopFAJqTopFJqTopFAJqTopF
5 1 2 4 3syl JTopOnXF:XontoYAClsdJqTopFAJqTopFJqTopFAJqTopF
6 toponuni JqTopFTopOnYY=JqTopF
7 1 6 syl JTopOnXF:XontoYY=JqTopF
8 7 sseq2d JTopOnXF:XontoYAYAJqTopF
9 7 difeq1d JTopOnXF:XontoYYA=JqTopFA
10 9 eleq1d JTopOnXF:XontoYYAJqTopFJqTopFAJqTopF
11 8 10 anbi12d JTopOnXF:XontoYAYYAJqTopFAJqTopFJqTopFAJqTopF
12 elqtop3 JTopOnXF:XontoYYAJqTopFYAYF-1YAJ
13 12 adantr JTopOnXF:XontoYAYYAJqTopFYAYF-1YAJ
14 difss YAY
15 14 biantrur F-1YAJYAYF-1YAJ
16 fofun F:XontoYFunF
17 16 ad2antlr JTopOnXF:XontoYAYFunF
18 funcnvcnv FunFFunF-1-1
19 imadif FunF-1-1F-1YA=F-1YF-1A
20 17 18 19 3syl JTopOnXF:XontoYAYF-1YA=F-1YF-1A
21 fof F:XontoYF:XY
22 fimacnv F:XYF-1Y=X
23 21 22 syl F:XontoYF-1Y=X
24 23 ad2antlr JTopOnXF:XontoYAYF-1Y=X
25 toponuni JTopOnXX=J
26 25 ad2antrr JTopOnXF:XontoYAYX=J
27 24 26 eqtrd JTopOnXF:XontoYAYF-1Y=J
28 27 difeq1d JTopOnXF:XontoYAYF-1YF-1A=JF-1A
29 20 28 eqtrd JTopOnXF:XontoYAYF-1YA=JF-1A
30 29 eleq1d JTopOnXF:XontoYAYF-1YAJJF-1AJ
31 topontop JTopOnXJTop
32 31 ad2antrr JTopOnXF:XontoYAYJTop
33 cnvimass F-1AdomF
34 fofn F:XontoYFFnX
35 34 fndmd F:XontoYdomF=X
36 35 ad2antlr JTopOnXF:XontoYAYdomF=X
37 33 36 sseqtrid JTopOnXF:XontoYAYF-1AX
38 37 26 sseqtrd JTopOnXF:XontoYAYF-1AJ
39 eqid J=J
40 39 iscld2 JTopF-1AJF-1AClsdJJF-1AJ
41 32 38 40 syl2anc JTopOnXF:XontoYAYF-1AClsdJJF-1AJ
42 30 41 bitr4d JTopOnXF:XontoYAYF-1YAJF-1AClsdJ
43 15 42 bitr3id JTopOnXF:XontoYAYYAYF-1YAJF-1AClsdJ
44 13 43 bitrd JTopOnXF:XontoYAYYAJqTopFF-1AClsdJ
45 44 pm5.32da JTopOnXF:XontoYAYYAJqTopFAYF-1AClsdJ
46 5 11 45 3bitr2d JTopOnXF:XontoYAClsdJqTopFAYF-1AClsdJ