Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | qtopcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtoptopon | |
|
2 | topontop | |
|
3 | eqid | |
|
4 | 3 | iscld | |
5 | 1 2 4 | 3syl | |
6 | toponuni | |
|
7 | 1 6 | syl | |
8 | 7 | sseq2d | |
9 | 7 | difeq1d | |
10 | 9 | eleq1d | |
11 | 8 10 | anbi12d | |
12 | elqtop3 | |
|
13 | 12 | adantr | |
14 | difss | |
|
15 | 14 | biantrur | |
16 | fofun | |
|
17 | 16 | ad2antlr | |
18 | funcnvcnv | |
|
19 | imadif | |
|
20 | 17 18 19 | 3syl | |
21 | fof | |
|
22 | fimacnv | |
|
23 | 21 22 | syl | |
24 | 23 | ad2antlr | |
25 | toponuni | |
|
26 | 25 | ad2antrr | |
27 | 24 26 | eqtrd | |
28 | 27 | difeq1d | |
29 | 20 28 | eqtrd | |
30 | 29 | eleq1d | |
31 | topontop | |
|
32 | 31 | ad2antrr | |
33 | cnvimass | |
|
34 | fofn | |
|
35 | 34 | fndmd | |
36 | 35 | ad2antlr | |
37 | 33 36 | sseqtrid | |
38 | 37 26 | sseqtrd | |
39 | eqid | |
|
40 | 39 | iscld2 | |
41 | 32 38 40 | syl2anc | |
42 | 30 41 | bitr4d | |
43 | 15 42 | bitr3id | |
44 | 13 43 | bitrd | |
45 | 44 | pm5.32da | |
46 | 5 11 45 | 3bitr2d | |