Description: Let W be a vector space, and let X be a subspace. Then the dimension of W is the sum of the dimension of X and the dimension of the quotient space of X . First part of theorem 5.3 in Lang p. 141. (Contributed by Thierry Arnoux, 20-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusdimsum.x | |
|
qusdimsum.y | |
||
Assertion | qusdimsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusdimsum.x | |
|
2 | qusdimsum.y | |
|
3 | eqid | |
|
4 | lveclmod | |
|
5 | 4 | adantr | |
6 | simpr | |
|
7 | eqid | |
|
8 | 2 3 5 6 7 | quslmhm | |
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 9 10 11 | dimkerim | |
13 | 8 12 | syldan | |
14 | eqid | |
|
15 | 14 | lsssubg | |
16 | 4 15 | sylan | |
17 | lmodabl | |
|
18 | 4 17 | syl | |
19 | 18 | adantr | |
20 | ablnsg | |
|
21 | 19 20 | syl | |
22 | 16 21 | eleqtrrd | |
23 | 3 7 2 9 | qusker | |
24 | 23 | oveq2d | |
25 | 22 24 | syl | |
26 | 25 1 | eqtr4di | |
27 | 26 | fveq2d | |
28 | 2 | a1i | |
29 | 3 | a1i | |
30 | ovexd | |
|
31 | simpl | |
|
32 | 28 29 7 30 31 | quslem | |
33 | forn | |
|
34 | 32 33 | syl | |
35 | 28 29 30 31 | qusbas | |
36 | 34 35 | eqtr2d | |
37 | 36 | oveq2d | |
38 | 2 | ovexi | |
39 | eqid | |
|
40 | 39 | ressid | |
41 | 38 40 | ax-mp | |
42 | 37 41 | eqtr3di | |
43 | 42 | fveq2d | |
44 | 27 43 | oveq12d | |
45 | 13 44 | eqtrd | |