Metamath Proof Explorer


Theorem qusdimsum

Description: Let W be a vector space, and let X be a subspace. Then the dimension of W is the sum of the dimension of X and the dimension of the quotient space of X . First part of theorem 5.3 in Lang p. 141. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses qusdimsum.x X=W𝑠U
qusdimsum.y Y=W/𝑠W~QGU
Assertion qusdimsum WLVecULSubSpWdimW=dimX+𝑒dimY

Proof

Step Hyp Ref Expression
1 qusdimsum.x X=W𝑠U
2 qusdimsum.y Y=W/𝑠W~QGU
3 eqid BaseW=BaseW
4 lveclmod WLVecWLMod
5 4 adantr WLVecULSubSpWWLMod
6 simpr WLVecULSubSpWULSubSpW
7 eqid xBaseWxW~QGU=xBaseWxW~QGU
8 2 3 5 6 7 quslmhm WLVecULSubSpWxBaseWxW~QGUWLMHomY
9 eqid 0Y=0Y
10 eqid W𝑠xBaseWxW~QGU-10Y=W𝑠xBaseWxW~QGU-10Y
11 eqid Y𝑠ranxBaseWxW~QGU=Y𝑠ranxBaseWxW~QGU
12 9 10 11 dimkerim WLVecxBaseWxW~QGUWLMHomYdimW=dimW𝑠xBaseWxW~QGU-10Y+𝑒dimY𝑠ranxBaseWxW~QGU
13 8 12 syldan WLVecULSubSpWdimW=dimW𝑠xBaseWxW~QGU-10Y+𝑒dimY𝑠ranxBaseWxW~QGU
14 eqid LSubSpW=LSubSpW
15 14 lsssubg WLModULSubSpWUSubGrpW
16 4 15 sylan WLVecULSubSpWUSubGrpW
17 lmodabl WLModWAbel
18 4 17 syl WLVecWAbel
19 18 adantr WLVecULSubSpWWAbel
20 ablnsg WAbelNrmSGrpW=SubGrpW
21 19 20 syl WLVecULSubSpWNrmSGrpW=SubGrpW
22 16 21 eleqtrrd WLVecULSubSpWUNrmSGrpW
23 3 7 2 9 qusker UNrmSGrpWxBaseWxW~QGU-10Y=U
24 23 oveq2d UNrmSGrpWW𝑠xBaseWxW~QGU-10Y=W𝑠U
25 22 24 syl WLVecULSubSpWW𝑠xBaseWxW~QGU-10Y=W𝑠U
26 25 1 eqtr4di WLVecULSubSpWW𝑠xBaseWxW~QGU-10Y=X
27 26 fveq2d WLVecULSubSpWdimW𝑠xBaseWxW~QGU-10Y=dimX
28 2 a1i WLVecULSubSpWY=W/𝑠W~QGU
29 3 a1i WLVecULSubSpWBaseW=BaseW
30 ovexd WLVecULSubSpWW~QGUV
31 simpl WLVecULSubSpWWLVec
32 28 29 7 30 31 quslem WLVecULSubSpWxBaseWxW~QGU:BaseWontoBaseW/W~QGU
33 forn xBaseWxW~QGU:BaseWontoBaseW/W~QGUranxBaseWxW~QGU=BaseW/W~QGU
34 32 33 syl WLVecULSubSpWranxBaseWxW~QGU=BaseW/W~QGU
35 28 29 30 31 qusbas WLVecULSubSpWBaseW/W~QGU=BaseY
36 34 35 eqtr2d WLVecULSubSpWBaseY=ranxBaseWxW~QGU
37 36 oveq2d WLVecULSubSpWY𝑠BaseY=Y𝑠ranxBaseWxW~QGU
38 2 ovexi YV
39 eqid BaseY=BaseY
40 39 ressid YVY𝑠BaseY=Y
41 38 40 ax-mp Y𝑠BaseY=Y
42 37 41 eqtr3di WLVecULSubSpWY𝑠ranxBaseWxW~QGU=Y
43 42 fveq2d WLVecULSubSpWdimY𝑠ranxBaseWxW~QGU=dimY
44 27 43 oveq12d WLVecULSubSpWdimW𝑠xBaseWxW~QGU-10Y+𝑒dimY𝑠ranxBaseWxW~QGU=dimX+𝑒dimY
45 13 44 eqtrd WLVecULSubSpWdimW=dimX+𝑒dimY