Metamath Proof Explorer


Theorem qusdimsum

Description: Let W be a vector space, and let X be a subspace. Then the dimension of W is the sum of the dimension of X and the dimension of the quotient space of X . First part of theorem 5.3 in Lang p. 141 (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses qusdimsum.x X = W 𝑠 U
qusdimsum.y Y = W / 𝑠 W ~ QG U
Assertion qusdimsum W LVec U LSubSp W dim W = dim X + 𝑒 dim Y

Proof

Step Hyp Ref Expression
1 qusdimsum.x X = W 𝑠 U
2 qusdimsum.y Y = W / 𝑠 W ~ QG U
3 eqid Base W = Base W
4 lveclmod W LVec W LMod
5 4 adantr W LVec U LSubSp W W LMod
6 simpr W LVec U LSubSp W U LSubSp W
7 eqid x Base W x W ~ QG U = x Base W x W ~ QG U
8 2 3 5 6 7 quslmhm W LVec U LSubSp W x Base W x W ~ QG U W LMHom Y
9 eqid 0 Y = 0 Y
10 eqid W 𝑠 x Base W x W ~ QG U -1 0 Y = W 𝑠 x Base W x W ~ QG U -1 0 Y
11 eqid Y 𝑠 ran x Base W x W ~ QG U = Y 𝑠 ran x Base W x W ~ QG U
12 9 10 11 dimkerim W LVec x Base W x W ~ QG U W LMHom Y dim W = dim W 𝑠 x Base W x W ~ QG U -1 0 Y + 𝑒 dim Y 𝑠 ran x Base W x W ~ QG U
13 8 12 syldan W LVec U LSubSp W dim W = dim W 𝑠 x Base W x W ~ QG U -1 0 Y + 𝑒 dim Y 𝑠 ran x Base W x W ~ QG U
14 eqid LSubSp W = LSubSp W
15 14 lsssubg W LMod U LSubSp W U SubGrp W
16 4 15 sylan W LVec U LSubSp W U SubGrp W
17 lmodabl W LMod W Abel
18 4 17 syl W LVec W Abel
19 18 adantr W LVec U LSubSp W W Abel
20 ablnsg W Abel NrmSGrp W = SubGrp W
21 19 20 syl W LVec U LSubSp W NrmSGrp W = SubGrp W
22 16 21 eleqtrrd W LVec U LSubSp W U NrmSGrp W
23 3 7 2 9 qusker U NrmSGrp W x Base W x W ~ QG U -1 0 Y = U
24 23 oveq2d U NrmSGrp W W 𝑠 x Base W x W ~ QG U -1 0 Y = W 𝑠 U
25 22 24 syl W LVec U LSubSp W W 𝑠 x Base W x W ~ QG U -1 0 Y = W 𝑠 U
26 25 1 syl6eqr W LVec U LSubSp W W 𝑠 x Base W x W ~ QG U -1 0 Y = X
27 26 fveq2d W LVec U LSubSp W dim W 𝑠 x Base W x W ~ QG U -1 0 Y = dim X
28 2 ovexi Y V
29 eqid Base Y = Base Y
30 29 ressid Y V Y 𝑠 Base Y = Y
31 28 30 ax-mp Y 𝑠 Base Y = Y
32 2 a1i W LVec U LSubSp W Y = W / 𝑠 W ~ QG U
33 3 a1i W LVec U LSubSp W Base W = Base W
34 ovexd W LVec U LSubSp W W ~ QG U V
35 simpl W LVec U LSubSp W W LVec
36 32 33 7 34 35 quslem W LVec U LSubSp W x Base W x W ~ QG U : Base W onto Base W / W ~ QG U
37 forn x Base W x W ~ QG U : Base W onto Base W / W ~ QG U ran x Base W x W ~ QG U = Base W / W ~ QG U
38 36 37 syl W LVec U LSubSp W ran x Base W x W ~ QG U = Base W / W ~ QG U
39 32 33 34 35 qusbas W LVec U LSubSp W Base W / W ~ QG U = Base Y
40 38 39 eqtr2d W LVec U LSubSp W Base Y = ran x Base W x W ~ QG U
41 40 oveq2d W LVec U LSubSp W Y 𝑠 Base Y = Y 𝑠 ran x Base W x W ~ QG U
42 31 41 syl5reqr W LVec U LSubSp W Y 𝑠 ran x Base W x W ~ QG U = Y
43 42 fveq2d W LVec U LSubSp W dim Y 𝑠 ran x Base W x W ~ QG U = dim Y
44 27 43 oveq12d W LVec U LSubSp W dim W 𝑠 x Base W x W ~ QG U -1 0 Y + 𝑒 dim Y 𝑠 ran x Base W x W ~ QG U = dim X + 𝑒 dim Y
45 13 44 eqtrd W LVec U LSubSp W dim W = dim X + 𝑒 dim Y