Metamath Proof Explorer


Theorem r1pwss

Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1pwss A R1 B 𝒫 A R1 B

Proof

Step Hyp Ref Expression
1 r1funlim Fun R1 Lim dom R1
2 1 simpri Lim dom R1
3 limord Lim dom R1 Ord dom R1
4 2 3 ax-mp Ord dom R1
5 ordsson Ord dom R1 dom R1 On
6 4 5 ax-mp dom R1 On
7 elfvdm A R1 B B dom R1
8 6 7 sseldi A R1 B B On
9 onzsl B On B = x On B = suc x B V Lim B
10 8 9 sylib A R1 B B = x On B = suc x B V Lim B
11 noel ¬ A
12 fveq2 B = R1 B = R1
13 r10 R1 =
14 12 13 eqtrdi B = R1 B =
15 14 eleq2d B = A R1 B A
16 15 biimpcd A R1 B B = A
17 11 16 mtoi A R1 B ¬ B =
18 17 pm2.21d A R1 B B = 𝒫 A R1 B
19 simpl A R1 B B = suc x A R1 B
20 simpr A R1 B B = suc x B = suc x
21 20 fveq2d A R1 B B = suc x R1 B = R1 suc x
22 7 adantr A R1 B B = suc x B dom R1
23 20 22 eqeltrrd A R1 B B = suc x suc x dom R1
24 limsuc Lim dom R1 x dom R1 suc x dom R1
25 2 24 ax-mp x dom R1 suc x dom R1
26 23 25 sylibr A R1 B B = suc x x dom R1
27 r1sucg x dom R1 R1 suc x = 𝒫 R1 x
28 26 27 syl A R1 B B = suc x R1 suc x = 𝒫 R1 x
29 21 28 eqtrd A R1 B B = suc x R1 B = 𝒫 R1 x
30 19 29 eleqtrd A R1 B B = suc x A 𝒫 R1 x
31 elpwi A 𝒫 R1 x A R1 x
32 sspw A R1 x 𝒫 A 𝒫 R1 x
33 30 31 32 3syl A R1 B B = suc x 𝒫 A 𝒫 R1 x
34 33 29 sseqtrrd A R1 B B = suc x 𝒫 A R1 B
35 34 ex A R1 B B = suc x 𝒫 A R1 B
36 35 rexlimdvw A R1 B x On B = suc x 𝒫 A R1 B
37 r1tr Tr R1 B
38 simpl A R1 B Lim B A R1 B
39 r1limg B dom R1 Lim B R1 B = x B R1 x
40 7 39 sylan A R1 B Lim B R1 B = x B R1 x
41 38 40 eleqtrd A R1 B Lim B A x B R1 x
42 eliun A x B R1 x x B A R1 x
43 41 42 sylib A R1 B Lim B x B A R1 x
44 simprl A R1 B Lim B x B A R1 x x B
45 limsuc Lim B x B suc x B
46 45 ad2antlr A R1 B Lim B x B A R1 x x B suc x B
47 44 46 mpbid A R1 B Lim B x B A R1 x suc x B
48 limsuc Lim B suc x B suc suc x B
49 48 ad2antlr A R1 B Lim B x B A R1 x suc x B suc suc x B
50 47 49 mpbid A R1 B Lim B x B A R1 x suc suc x B
51 r1tr Tr R1 x
52 simprr A R1 B Lim B x B A R1 x A R1 x
53 trss Tr R1 x A R1 x A R1 x
54 51 52 53 mpsyl A R1 B Lim B x B A R1 x A R1 x
55 54 32 syl A R1 B Lim B x B A R1 x 𝒫 A 𝒫 R1 x
56 7 ad2antrr A R1 B Lim B x B A R1 x B dom R1
57 ordtr1 Ord dom R1 x B B dom R1 x dom R1
58 4 57 ax-mp x B B dom R1 x dom R1
59 44 56 58 syl2anc A R1 B Lim B x B A R1 x x dom R1
60 59 27 syl A R1 B Lim B x B A R1 x R1 suc x = 𝒫 R1 x
61 55 60 sseqtrrd A R1 B Lim B x B A R1 x 𝒫 A R1 suc x
62 fvex R1 suc x V
63 62 elpw2 𝒫 A 𝒫 R1 suc x 𝒫 A R1 suc x
64 61 63 sylibr A R1 B Lim B x B A R1 x 𝒫 A 𝒫 R1 suc x
65 59 25 sylib A R1 B Lim B x B A R1 x suc x dom R1
66 r1sucg suc x dom R1 R1 suc suc x = 𝒫 R1 suc x
67 65 66 syl A R1 B Lim B x B A R1 x R1 suc suc x = 𝒫 R1 suc x
68 64 67 eleqtrrd A R1 B Lim B x B A R1 x 𝒫 A R1 suc suc x
69 fveq2 y = suc suc x R1 y = R1 suc suc x
70 69 eleq2d y = suc suc x 𝒫 A R1 y 𝒫 A R1 suc suc x
71 70 rspcev suc suc x B 𝒫 A R1 suc suc x y B 𝒫 A R1 y
72 50 68 71 syl2anc A R1 B Lim B x B A R1 x y B 𝒫 A R1 y
73 43 72 rexlimddv A R1 B Lim B y B 𝒫 A R1 y
74 eliun 𝒫 A y B R1 y y B 𝒫 A R1 y
75 73 74 sylibr A R1 B Lim B 𝒫 A y B R1 y
76 r1limg B dom R1 Lim B R1 B = y B R1 y
77 7 76 sylan A R1 B Lim B R1 B = y B R1 y
78 75 77 eleqtrrd A R1 B Lim B 𝒫 A R1 B
79 trss Tr R1 B 𝒫 A R1 B 𝒫 A R1 B
80 37 78 79 mpsyl A R1 B Lim B 𝒫 A R1 B
81 80 ex A R1 B Lim B 𝒫 A R1 B
82 81 adantld A R1 B B V Lim B 𝒫 A R1 B
83 18 36 82 3jaod A R1 B B = x On B = suc x B V Lim B 𝒫 A R1 B
84 10 83 mpd A R1 B 𝒫 A R1 B