Metamath Proof Explorer


Theorem ramtlecl

Description: The set T of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Hypothesis ramtlecl.t T=n0|snsφ
Assertion ramtlecl MTMT

Proof

Step Hyp Ref Expression
1 ramtlecl.t T=n0|snsφ
2 breq1 n=MnsMs
3 2 imbi1d n=MnsφMsφ
4 3 albidv n=MsnsφsMsφ
5 4 1 elrab2 MTM0sMsφ
6 5 simplbi MTM0
7 eluznn0 M0nMn0
8 7 ex M0nMn0
9 8 ssrdv M0M0
10 6 9 syl MTM0
11 5 simprbi MTsMsφ
12 eluzle nMMn
13 12 adantl MTnMMn
14 nn0ssre 0
15 ressxr *
16 14 15 sstri 0*
17 6 adantr MTnMM0
18 16 17 sselid MTnMM*
19 6 7 sylan MTnMn0
20 16 19 sselid MTnMn*
21 vex sV
22 hashxrcl sVs*
23 21 22 mp1i MTnMs*
24 xrletr M*n*s*MnnsMs
25 18 20 23 24 syl3anc MTnMMnnsMs
26 13 25 mpand MTnMnsMs
27 26 imim1d MTnMMsφnsφ
28 27 ralrimdva MTMsφnMnsφ
29 28 alimdv MTsMsφsnMnsφ
30 11 29 mpd MTsnMnsφ
31 ralcom4 nMsnsφsnMnsφ
32 30 31 sylibr MTnMsnsφ
33 ssrab Mn0|snsφM0nMsnsφ
34 10 32 33 sylanbrc MTMn0|snsφ
35 34 1 sseqtrrdi MTMT