Metamath Proof Explorer


Theorem regsep2

Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion regsep2 JRegCClsdJAX¬ACxJyJCxAyxy=

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 regtop JRegJTop
3 2 ad2antrr JRegCClsdJAX¬ACyJAyclsJyXCJTop
4 elssuni yJyJ
5 4 1 sseqtrrdi yJyX
6 5 ad2antrl JRegCClsdJAX¬ACyJAyclsJyXCyX
7 1 clscld JTopyXclsJyClsdJ
8 3 6 7 syl2anc JRegCClsdJAX¬ACyJAyclsJyXCclsJyClsdJ
9 1 cldopn clsJyClsdJXclsJyJ
10 8 9 syl JRegCClsdJAX¬ACyJAyclsJyXCXclsJyJ
11 simprrr JRegCClsdJAX¬ACyJAyclsJyXCclsJyXC
12 1 clsss3 JTopyXclsJyX
13 3 6 12 syl2anc JRegCClsdJAX¬ACyJAyclsJyXCclsJyX
14 simplr1 JRegCClsdJAX¬ACyJAyclsJyXCCClsdJ
15 1 cldss CClsdJCX
16 14 15 syl JRegCClsdJAX¬ACyJAyclsJyXCCX
17 ssconb clsJyXCXclsJyXCCXclsJy
18 13 16 17 syl2anc JRegCClsdJAX¬ACyJAyclsJyXCclsJyXCCXclsJy
19 11 18 mpbid JRegCClsdJAX¬ACyJAyclsJyXCCXclsJy
20 simprrl JRegCClsdJAX¬ACyJAyclsJyXCAy
21 1 sscls JTopyXyclsJy
22 3 6 21 syl2anc JRegCClsdJAX¬ACyJAyclsJyXCyclsJy
23 sslin yclsJyXclsJyyXclsJyclsJy
24 22 23 syl JRegCClsdJAX¬ACyJAyclsJyXCXclsJyyXclsJyclsJy
25 disjdifr XclsJyclsJy=
26 sseq0 XclsJyyXclsJyclsJyXclsJyclsJy=XclsJyy=
27 24 25 26 sylancl JRegCClsdJAX¬ACyJAyclsJyXCXclsJyy=
28 sseq2 x=XclsJyCxCXclsJy
29 ineq1 x=XclsJyxy=XclsJyy
30 29 eqeq1d x=XclsJyxy=XclsJyy=
31 28 30 3anbi13d x=XclsJyCxAyxy=CXclsJyAyXclsJyy=
32 31 rspcev XclsJyJCXclsJyAyXclsJyy=xJCxAyxy=
33 10 19 20 27 32 syl13anc JRegCClsdJAX¬ACyJAyclsJyXCxJCxAyxy=
34 simpl JRegCClsdJAX¬ACJReg
35 simpr1 JRegCClsdJAX¬ACCClsdJ
36 1 cldopn CClsdJXCJ
37 35 36 syl JRegCClsdJAX¬ACXCJ
38 simpr2 JRegCClsdJAX¬ACAX
39 simpr3 JRegCClsdJAX¬AC¬AC
40 38 39 eldifd JRegCClsdJAX¬ACAXC
41 regsep JRegXCJAXCyJAyclsJyXC
42 34 37 40 41 syl3anc JRegCClsdJAX¬ACyJAyclsJyXC
43 33 42 reximddv JRegCClsdJAX¬ACyJxJCxAyxy=
44 rexcom yJxJCxAyxy=xJyJCxAyxy=
45 43 44 sylib JRegCClsdJAX¬ACxJyJCxAyxy=