| Step | Hyp | Ref | Expression | 
						
							| 1 |  | t1sep.1 |  | 
						
							| 2 |  | regtop |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 |  | elssuni |  | 
						
							| 5 | 4 1 | sseqtrrdi |  | 
						
							| 6 | 5 | ad2antrl |  | 
						
							| 7 | 1 | clscld |  | 
						
							| 8 | 3 6 7 | syl2anc |  | 
						
							| 9 | 1 | cldopn |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | simprrr |  | 
						
							| 12 | 1 | clsss3 |  | 
						
							| 13 | 3 6 12 | syl2anc |  | 
						
							| 14 |  | simplr1 |  | 
						
							| 15 | 1 | cldss |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | ssconb |  | 
						
							| 18 | 13 16 17 | syl2anc |  | 
						
							| 19 | 11 18 | mpbid |  | 
						
							| 20 |  | simprrl |  | 
						
							| 21 | 1 | sscls |  | 
						
							| 22 | 3 6 21 | syl2anc |  | 
						
							| 23 |  | sslin |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 |  | disjdifr |  | 
						
							| 26 |  | sseq0 |  | 
						
							| 27 | 24 25 26 | sylancl |  | 
						
							| 28 |  | sseq2 |  | 
						
							| 29 |  | ineq1 |  | 
						
							| 30 | 29 | eqeq1d |  | 
						
							| 31 | 28 30 | 3anbi13d |  | 
						
							| 32 | 31 | rspcev |  | 
						
							| 33 | 10 19 20 27 32 | syl13anc |  | 
						
							| 34 |  | simpl |  | 
						
							| 35 |  | simpr1 |  | 
						
							| 36 | 1 | cldopn |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | simpr2 |  | 
						
							| 39 |  | simpr3 |  | 
						
							| 40 | 38 39 | eldifd |  | 
						
							| 41 |  | regsep |  | 
						
							| 42 | 34 37 40 41 | syl3anc |  | 
						
							| 43 | 33 42 | reximddv |  | 
						
							| 44 |  | rexcom |  | 
						
							| 45 | 43 44 | sylib |  |