Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | t1sep.1 | |
|
Assertion | regsep2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1sep.1 | |
|
2 | regtop | |
|
3 | 2 | ad2antrr | |
4 | elssuni | |
|
5 | 4 1 | sseqtrrdi | |
6 | 5 | ad2antrl | |
7 | 1 | clscld | |
8 | 3 6 7 | syl2anc | |
9 | 1 | cldopn | |
10 | 8 9 | syl | |
11 | simprrr | |
|
12 | 1 | clsss3 | |
13 | 3 6 12 | syl2anc | |
14 | simplr1 | |
|
15 | 1 | cldss | |
16 | 14 15 | syl | |
17 | ssconb | |
|
18 | 13 16 17 | syl2anc | |
19 | 11 18 | mpbid | |
20 | simprrl | |
|
21 | 1 | sscls | |
22 | 3 6 21 | syl2anc | |
23 | sslin | |
|
24 | 22 23 | syl | |
25 | disjdifr | |
|
26 | sseq0 | |
|
27 | 24 25 26 | sylancl | |
28 | sseq2 | |
|
29 | ineq1 | |
|
30 | 29 | eqeq1d | |
31 | 28 30 | 3anbi13d | |
32 | 31 | rspcev | |
33 | 10 19 20 27 32 | syl13anc | |
34 | simpl | |
|
35 | simpr1 | |
|
36 | 1 | cldopn | |
37 | 35 36 | syl | |
38 | simpr2 | |
|
39 | simpr3 | |
|
40 | 38 39 | eldifd | |
41 | regsep | |
|
42 | 34 37 40 41 | syl3anc | |
43 | 33 42 | reximddv | |
44 | rexcom | |
|
45 | 43 44 | sylib | |