Metamath Proof Explorer


Theorem relexpcnv

Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpcnv N0RVRrN-1=R-1rN

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 oveq2 n=1Rrn=Rr1
3 2 cnveqd n=1Rrn-1=Rr1-1
4 oveq2 n=1R-1rn=R-1r1
5 3 4 eqeq12d n=1Rrn-1=R-1rnRr1-1=R-1r1
6 5 imbi2d n=1RVRrn-1=R-1rnRVRr1-1=R-1r1
7 oveq2 n=mRrn=Rrm
8 7 cnveqd n=mRrn-1=Rrm-1
9 oveq2 n=mR-1rn=R-1rm
10 8 9 eqeq12d n=mRrn-1=R-1rnRrm-1=R-1rm
11 10 imbi2d n=mRVRrn-1=R-1rnRVRrm-1=R-1rm
12 oveq2 n=m+1Rrn=Rrm+1
13 12 cnveqd n=m+1Rrn-1=Rrm+1-1
14 oveq2 n=m+1R-1rn=R-1rm+1
15 13 14 eqeq12d n=m+1Rrn-1=R-1rnRrm+1-1=R-1rm+1
16 15 imbi2d n=m+1RVRrn-1=R-1rnRVRrm+1-1=R-1rm+1
17 oveq2 n=NRrn=RrN
18 17 cnveqd n=NRrn-1=RrN-1
19 oveq2 n=NR-1rn=R-1rN
20 18 19 eqeq12d n=NRrn-1=R-1rnRrN-1=R-1rN
21 20 imbi2d n=NRVRrn-1=R-1rnRVRrN-1=R-1rN
22 relexp1g RVRr1=R
23 22 cnveqd RVRr1-1=R-1
24 cnvexg RVR-1V
25 relexp1g R-1VR-1r1=R-1
26 24 25 syl RVR-1r1=R-1
27 23 26 eqtr4d RVRr1-1=R-1r1
28 cnvco RrmR-1=R-1Rrm-1
29 simp3 mRVRrm-1=R-1rmRrm-1=R-1rm
30 29 coeq2d mRVRrm-1=R-1rmR-1Rrm-1=R-1R-1rm
31 28 30 eqtrid mRVRrm-1=R-1rmRrmR-1=R-1R-1rm
32 simp2 mRVRrm-1=R-1rmRV
33 simp1 mRVRrm-1=R-1rmm
34 relexpsucnnr RVmRrm+1=RrmR
35 32 33 34 syl2anc mRVRrm-1=R-1rmRrm+1=RrmR
36 35 cnveqd mRVRrm-1=R-1rmRrm+1-1=RrmR-1
37 32 24 syl mRVRrm-1=R-1rmR-1V
38 relexpsucnnl R-1VmR-1rm+1=R-1R-1rm
39 37 33 38 syl2anc mRVRrm-1=R-1rmR-1rm+1=R-1R-1rm
40 31 36 39 3eqtr4d mRVRrm-1=R-1rmRrm+1-1=R-1rm+1
41 40 3exp mRVRrm-1=R-1rmRrm+1-1=R-1rm+1
42 41 a2d mRVRrm-1=R-1rmRVRrm+1-1=R-1rm+1
43 6 11 16 21 27 42 nnind NRVRrN-1=R-1rN
44 cnvresid IdomRranR-1=IdomRranR
45 uncom domRranR=ranRdomR
46 df-rn ranR=domR-1
47 dfdm4 domR=ranR-1
48 46 47 uneq12i ranRdomR=domR-1ranR-1
49 45 48 eqtri domRranR=domR-1ranR-1
50 49 reseq2i IdomRranR=IdomR-1ranR-1
51 44 50 eqtri IdomRranR-1=IdomR-1ranR-1
52 oveq2 N=0RrN=Rr0
53 relexp0g RVRr0=IdomRranR
54 52 53 sylan9eq N=0RVRrN=IdomRranR
55 54 cnveqd N=0RVRrN-1=IdomRranR-1
56 oveq2 N=0R-1rN=R-1r0
57 56 adantr N=0RVR-1rN=R-1r0
58 simpr N=0RVRV
59 relexp0g R-1VR-1r0=IdomR-1ranR-1
60 58 24 59 3syl N=0RVR-1r0=IdomR-1ranR-1
61 57 60 eqtrd N=0RVR-1rN=IdomR-1ranR-1
62 51 55 61 3eqtr4a N=0RVRrN-1=R-1rN
63 62 ex N=0RVRrN-1=R-1rN
64 43 63 jaoi NN=0RVRrN-1=R-1rN
65 1 64 sylbi N0RVRrN-1=R-1rN
66 65 imp N0RVRrN-1=R-1rN