Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpcnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | oveq2 | |
|
3 | 2 | cnveqd | |
4 | oveq2 | |
|
5 | 3 4 | eqeq12d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | cnveqd | |
9 | oveq2 | |
|
10 | 8 9 | eqeq12d | |
11 | 10 | imbi2d | |
12 | oveq2 | |
|
13 | 12 | cnveqd | |
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | oveq2 | |
|
18 | 17 | cnveqd | |
19 | oveq2 | |
|
20 | 18 19 | eqeq12d | |
21 | 20 | imbi2d | |
22 | relexp1g | |
|
23 | 22 | cnveqd | |
24 | cnvexg | |
|
25 | relexp1g | |
|
26 | 24 25 | syl | |
27 | 23 26 | eqtr4d | |
28 | cnvco | |
|
29 | simp3 | |
|
30 | 29 | coeq2d | |
31 | 28 30 | eqtrid | |
32 | simp2 | |
|
33 | simp1 | |
|
34 | relexpsucnnr | |
|
35 | 32 33 34 | syl2anc | |
36 | 35 | cnveqd | |
37 | 32 24 | syl | |
38 | relexpsucnnl | |
|
39 | 37 33 38 | syl2anc | |
40 | 31 36 39 | 3eqtr4d | |
41 | 40 | 3exp | |
42 | 41 | a2d | |
43 | 6 11 16 21 27 42 | nnind | |
44 | cnvresid | |
|
45 | uncom | |
|
46 | df-rn | |
|
47 | dfdm4 | |
|
48 | 46 47 | uneq12i | |
49 | 45 48 | eqtri | |
50 | 49 | reseq2i | |
51 | 44 50 | eqtri | |
52 | oveq2 | |
|
53 | relexp0g | |
|
54 | 52 53 | sylan9eq | |
55 | 54 | cnveqd | |
56 | oveq2 | |
|
57 | 56 | adantr | |
58 | simpr | |
|
59 | relexp0g | |
|
60 | 58 24 59 | 3syl | |
61 | 57 60 | eqtrd | |
62 | 51 55 61 | 3eqtr4a | |
63 | 62 | ex | |
64 | 43 63 | jaoi | |
65 | 1 64 | sylbi | |
66 | 65 | imp | |