Metamath Proof Explorer


Theorem relogbf

Description: The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in Cohen4 p. 349. (Contributed by AV, 12-Jun-2020)

Ref Expression
Assertion relogbf B+1<BcurrylogbB+:+

Proof

Step Hyp Ref Expression
1 rpcndif0 x+x0
2 1 adantl B+1<Bx+x0
3 rpcn B+B
4 3 adantr B+1<BB
5 rpne0 B+B0
6 5 adantr B+1<BB0
7 animorr B+1<BB<11<B
8 rpre B+B
9 1red 1<B1
10 lttri2 B1B1B<11<B
11 8 9 10 syl2an B+1<BB1B<11<B
12 7 11 mpbird B+1<BB1
13 4 6 12 3jca B+1<BBB0B1
14 logbmpt BB0B1currylogbB=x0logxlogB
15 13 14 syl B+1<BcurrylogbB=x0logxlogB
16 15 dmeqd B+1<BdomcurrylogbB=domx0logxlogB
17 ovexd B+1<Bx0logxlogBV
18 17 ralrimiva B+1<Bx0logxlogBV
19 dmmptg x0logxlogBVdomx0logxlogB=0
20 18 19 syl B+1<Bdomx0logxlogB=0
21 16 20 eqtrd B+1<BdomcurrylogbB=0
22 21 adantr B+1<Bx+domcurrylogbB=0
23 2 22 eleqtrrd B+1<Bx+xdomcurrylogbB
24 logbfval BB0B1x0currylogbBx=logBx
25 13 1 24 syl2an B+1<Bx+currylogbBx=logBx
26 simpll B+1<Bx+B+
27 simpr B+1<Bx+x+
28 12 adantr B+1<Bx+B1
29 26 27 28 3jca B+1<Bx+B+x+B1
30 relogbcl B+x+B1logBx
31 29 30 syl B+1<Bx+logBx
32 25 31 eqeltrd B+1<Bx+currylogbBx
33 23 32 jca B+1<Bx+xdomcurrylogbBcurrylogbBx
34 33 ralrimiva B+1<Bx+xdomcurrylogbBcurrylogbBx
35 logbf BB0B1currylogbB:0
36 13 35 syl B+1<BcurrylogbB:0
37 ffun currylogbB:0FuncurrylogbB
38 ffvresb FuncurrylogbBcurrylogbB+:+x+xdomcurrylogbBcurrylogbBx
39 36 37 38 3syl B+1<BcurrylogbB+:+x+xdomcurrylogbBcurrylogbBx
40 34 39 mpbird B+1<BcurrylogbB+:+