Metamath Proof Explorer


Theorem relogbmul

Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 29-May-2020)

Ref Expression
Assertion relogbmul B01A+C+logBAC=logBA+logBC

Proof

Step Hyp Ref Expression
1 relogmul A+C+logAC=logA+logC
2 1 adantl B01A+C+logAC=logA+logC
3 2 oveq1d B01A+C+logAClogB=logA+logClogB
4 relogcl A+logA
5 4 recnd A+logA
6 5 adantr A+C+logA
7 relogcl C+logC
8 7 recnd C+logC
9 8 adantl A+C+logC
10 eldifpr B01BB0B1
11 3simpa BB0B1BB0
12 10 11 sylbi B01BB0
13 logcl BB0logB
14 12 13 syl B01logB
15 logccne0 BB0B1logB0
16 10 15 sylbi B01logB0
17 14 16 jca B01logBlogB0
18 17 adantr B01A+C+logBlogB0
19 divdir logAlogClogBlogB0logA+logClogB=logAlogB+logClogB
20 6 9 18 19 syl2an23an B01A+C+logA+logClogB=logAlogB+logClogB
21 3 20 eqtrd B01A+C+logAClogB=logAlogB+logClogB
22 rpcn A+A
23 rpcn C+C
24 mulcl ACAC
25 22 23 24 syl2an A+C+AC
26 22 adantr A+C+A
27 23 adantl A+C+C
28 rpne0 A+A0
29 28 adantr A+C+A0
30 rpne0 C+C0
31 30 adantl A+C+C0
32 26 27 29 31 mulne0d A+C+AC0
33 eldifsn AC0ACAC0
34 25 32 33 sylanbrc A+C+AC0
35 logbval B01AC0logBAC=logAClogB
36 34 35 sylan2 B01A+C+logBAC=logAClogB
37 rpcndif0 A+A0
38 37 adantr A+C+A0
39 logbval B01A0logBA=logAlogB
40 38 39 sylan2 B01A+C+logBA=logAlogB
41 rpcndif0 C+C0
42 41 adantl A+C+C0
43 logbval B01C0logBC=logClogB
44 42 43 sylan2 B01A+C+logBC=logClogB
45 40 44 oveq12d B01A+C+logBA+logBC=logAlogB+logClogB
46 21 36 45 3eqtr4d B01A+C+logBAC=logBA+logBC