Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 29-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relogbmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogmul | |
|
2 | 1 | adantl | |
3 | 2 | oveq1d | |
4 | relogcl | |
|
5 | 4 | recnd | |
6 | 5 | adantr | |
7 | relogcl | |
|
8 | 7 | recnd | |
9 | 8 | adantl | |
10 | eldifpr | |
|
11 | 3simpa | |
|
12 | 10 11 | sylbi | |
13 | logcl | |
|
14 | 12 13 | syl | |
15 | logccne0 | |
|
16 | 10 15 | sylbi | |
17 | 14 16 | jca | |
18 | 17 | adantr | |
19 | divdir | |
|
20 | 6 9 18 19 | syl2an23an | |
21 | 3 20 | eqtrd | |
22 | rpcn | |
|
23 | rpcn | |
|
24 | mulcl | |
|
25 | 22 23 24 | syl2an | |
26 | 22 | adantr | |
27 | 23 | adantl | |
28 | rpne0 | |
|
29 | 28 | adantr | |
30 | rpne0 | |
|
31 | 30 | adantl | |
32 | 26 27 29 31 | mulne0d | |
33 | eldifsn | |
|
34 | 25 32 33 | sylanbrc | |
35 | logbval | |
|
36 | 34 35 | sylan2 | |
37 | rpcndif0 | |
|
38 | 37 | adantr | |
39 | logbval | |
|
40 | 38 39 | sylan2 | |
41 | rpcndif0 | |
|
42 | 41 | adantl | |
43 | logbval | |
|
44 | 42 43 | sylan2 | |
45 | 40 44 | oveq12d | |
46 | 21 36 45 | 3eqtr4d | |