Metamath Proof Explorer


Theorem relogbmul

Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 29-May-2020)

Ref Expression
Assertion relogbmul B 0 1 A + C + log B A C = log B A + log B C

Proof

Step Hyp Ref Expression
1 relogmul A + C + log A C = log A + log C
2 1 adantl B 0 1 A + C + log A C = log A + log C
3 2 oveq1d B 0 1 A + C + log A C log B = log A + log C log B
4 relogcl A + log A
5 4 recnd A + log A
6 5 adantr A + C + log A
7 relogcl C + log C
8 7 recnd C + log C
9 8 adantl A + C + log C
10 eldifpr B 0 1 B B 0 B 1
11 3simpa B B 0 B 1 B B 0
12 10 11 sylbi B 0 1 B B 0
13 logcl B B 0 log B
14 12 13 syl B 0 1 log B
15 logccne0 B B 0 B 1 log B 0
16 10 15 sylbi B 0 1 log B 0
17 14 16 jca B 0 1 log B log B 0
18 17 adantr B 0 1 A + C + log B log B 0
19 divdir log A log C log B log B 0 log A + log C log B = log A log B + log C log B
20 6 9 18 19 syl2an23an B 0 1 A + C + log A + log C log B = log A log B + log C log B
21 3 20 eqtrd B 0 1 A + C + log A C log B = log A log B + log C log B
22 rpcn A + A
23 rpcn C + C
24 mulcl A C A C
25 22 23 24 syl2an A + C + A C
26 22 adantr A + C + A
27 23 adantl A + C + C
28 rpne0 A + A 0
29 28 adantr A + C + A 0
30 rpne0 C + C 0
31 30 adantl A + C + C 0
32 26 27 29 31 mulne0d A + C + A C 0
33 eldifsn A C 0 A C A C 0
34 25 32 33 sylanbrc A + C + A C 0
35 logbval B 0 1 A C 0 log B A C = log A C log B
36 34 35 sylan2 B 0 1 A + C + log B A C = log A C log B
37 rpcndif0 A + A 0
38 37 adantr A + C + A 0
39 logbval B 0 1 A 0 log B A = log A log B
40 38 39 sylan2 B 0 1 A + C + log B A = log A log B
41 rpcndif0 C + C 0
42 41 adantl A + C + C 0
43 logbval B 0 1 C 0 log B C = log C log B
44 42 43 sylan2 B 0 1 A + C + log B C = log C log B
45 40 44 oveq12d B 0 1 A + C + log B A + log B C = log A log B + log C log B
46 21 36 45 3eqtr4d B 0 1 A + C + log B A C = log B A + log B C