| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reslmhm2.u |
|
| 2 |
|
reslmhm2.l |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
lmhmlmod1 |
|
| 10 |
9
|
adantl |
|
| 11 |
|
simpl1 |
|
| 12 |
|
simpl2 |
|
| 13 |
1 2
|
lsslmod |
|
| 14 |
11 12 13
|
syl2anc |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
resssca |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
6 15
|
lmhmsca |
|
| 19 |
17 18
|
sylan9req |
|
| 20 |
|
lmghm |
|
| 21 |
2
|
lsssubg |
|
| 22 |
1
|
resghm2b |
|
| 23 |
21 22
|
stoic3 |
|
| 24 |
23
|
biimpa |
|
| 25 |
20 24
|
sylan2 |
|
| 26 |
|
eqid |
|
| 27 |
6 8 3 4 26
|
lmhmlin |
|
| 28 |
27
|
3expb |
|
| 29 |
28
|
adantll |
|
| 30 |
|
simpll2 |
|
| 31 |
1 26
|
ressvsca |
|
| 32 |
31
|
oveqd |
|
| 33 |
30 32
|
syl |
|
| 34 |
29 33
|
eqtrd |
|
| 35 |
3 4 5 6 7 8 10 14 19 25 34
|
islmhmd |
|
| 36 |
|
simpr |
|
| 37 |
|
simpl1 |
|
| 38 |
|
simpl2 |
|
| 39 |
1 2
|
reslmhm2 |
|
| 40 |
36 37 38 39
|
syl3anc |
|
| 41 |
35 40
|
impbida |
|