Metamath Proof Explorer


Theorem resmhm2

Description: One direction of resmhm2b . (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resmhm2.u U=T𝑠X
Assertion resmhm2 FSMndHomUXSubMndTFSMndHomT

Proof

Step Hyp Ref Expression
1 resmhm2.u U=T𝑠X
2 mhmrcl1 FSMndHomUSMnd
3 submrcl XSubMndTTMnd
4 2 3 anim12i FSMndHomUXSubMndTSMndTMnd
5 eqid BaseS=BaseS
6 eqid BaseU=BaseU
7 5 6 mhmf FSMndHomUF:BaseSBaseU
8 1 submbas XSubMndTX=BaseU
9 eqid BaseT=BaseT
10 9 submss XSubMndTXBaseT
11 8 10 eqsstrrd XSubMndTBaseUBaseT
12 fss F:BaseSBaseUBaseUBaseTF:BaseSBaseT
13 7 11 12 syl2an FSMndHomUXSubMndTF:BaseSBaseT
14 eqid +S=+S
15 eqid +U=+U
16 5 14 15 mhmlin FSMndHomUxBaseSyBaseSFx+Sy=Fx+UFy
17 16 3expb FSMndHomUxBaseSyBaseSFx+Sy=Fx+UFy
18 17 adantlr FSMndHomUXSubMndTxBaseSyBaseSFx+Sy=Fx+UFy
19 eqid +T=+T
20 1 19 ressplusg XSubMndT+T=+U
21 20 ad2antlr FSMndHomUXSubMndTxBaseSyBaseS+T=+U
22 21 oveqd FSMndHomUXSubMndTxBaseSyBaseSFx+TFy=Fx+UFy
23 18 22 eqtr4d FSMndHomUXSubMndTxBaseSyBaseSFx+Sy=Fx+TFy
24 23 ralrimivva FSMndHomUXSubMndTxBaseSyBaseSFx+Sy=Fx+TFy
25 eqid 0S=0S
26 eqid 0U=0U
27 25 26 mhm0 FSMndHomUF0S=0U
28 27 adantr FSMndHomUXSubMndTF0S=0U
29 eqid 0T=0T
30 1 29 subm0 XSubMndT0T=0U
31 30 adantl FSMndHomUXSubMndT0T=0U
32 28 31 eqtr4d FSMndHomUXSubMndTF0S=0T
33 13 24 32 3jca FSMndHomUXSubMndTF:BaseSBaseTxBaseSyBaseSFx+Sy=Fx+TFyF0S=0T
34 5 9 14 19 25 29 ismhm FSMndHomTSMndTMndF:BaseSBaseTxBaseSyBaseSFx+Sy=Fx+TFyF0S=0T
35 4 33 34 sylanbrc FSMndHomUXSubMndTFSMndHomT