| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressioosup.a |  | 
						
							| 2 |  | ressioosup.s |  | 
						
							| 3 |  | ressioosup.n |  | 
						
							| 4 |  | ressioosup.i |  | 
						
							| 5 |  | mnfxr |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | ressxr |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 1 8 | sstrd |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 10 | supxrcld |  | 
						
							| 12 | 2 11 | eqeltrid |  | 
						
							| 13 | 1 | adantr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 13 14 | sseldd |  | 
						
							| 16 | 15 | mnfltd |  | 
						
							| 17 | 9 | sselda |  | 
						
							| 18 |  | supxrub |  | 
						
							| 19 | 10 14 18 | syl2anc |  | 
						
							| 20 | 2 | a1i |  | 
						
							| 21 | 20 | eqcomd |  | 
						
							| 22 | 19 21 | breqtrd |  | 
						
							| 23 |  | id |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | simpl |  | 
						
							| 27 | 25 26 | eqeltrd |  | 
						
							| 28 | 27 | adantll |  | 
						
							| 29 | 3 | ad2antrr |  | 
						
							| 30 | 28 29 | pm2.65da |  | 
						
							| 31 | 30 | neqned |  | 
						
							| 32 | 17 12 22 31 | xrleneltd |  | 
						
							| 33 | 6 12 15 16 32 | eliood |  | 
						
							| 34 | 33 4 | eleqtrrdi |  | 
						
							| 35 | 34 | ralrimiva |  | 
						
							| 36 |  | dfss3 |  | 
						
							| 37 | 35 36 | sylibr |  |