| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s |  | 
						
							| 2 |  | resspsr.h |  | 
						
							| 3 |  | resspsr.u |  | 
						
							| 4 |  | resspsr.b |  | 
						
							| 5 |  | resspsr.p |  | 
						
							| 6 |  | resspsr.2 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 |  | simprr |  | 
						
							| 11 | 3 4 7 8 9 10 | psradd |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | fvex |  | 
						
							| 16 | 2 | subrgbas |  | 
						
							| 17 | 6 16 | syl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | subrgss |  | 
						
							| 20 | 6 19 | syl |  | 
						
							| 21 | 17 20 | eqsstrrd |  | 
						
							| 22 |  | mapss |  | 
						
							| 23 | 15 21 22 | sylancr |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | reldmpsr |  | 
						
							| 28 | 27 3 4 | elbasov |  | 
						
							| 29 | 28 | ad2antrl |  | 
						
							| 30 | 29 | simpld |  | 
						
							| 31 | 3 25 26 4 30 | psrbas |  | 
						
							| 32 | 1 18 26 12 30 | psrbas |  | 
						
							| 33 | 24 31 32 | 3sstr4d |  | 
						
							| 34 | 33 9 | sseldd |  | 
						
							| 35 | 33 10 | sseldd |  | 
						
							| 36 | 1 12 13 14 34 35 | psradd |  | 
						
							| 37 | 2 13 | ressplusg |  | 
						
							| 38 | 6 37 | syl |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 39 | ofeqd |  | 
						
							| 41 | 40 | oveqd |  | 
						
							| 42 | 36 41 | eqtrd |  | 
						
							| 43 | 4 | fvexi |  | 
						
							| 44 | 5 14 | ressplusg |  | 
						
							| 45 | 43 44 | mp1i |  | 
						
							| 46 | 45 | oveqd |  | 
						
							| 47 | 11 42 46 | 3eqtr2d |  |