| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfn |  | 
						
							| 2 | 1 | ad2antrr |  | 
						
							| 3 |  | lencl |  | 
						
							| 4 | 3 | nn0zd |  | 
						
							| 5 |  | fzoval |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 7 | eleq2d |  | 
						
							| 9 | 8 | biimpa |  | 
						
							| 10 |  | fznn0sub2 |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 7 | adantr |  | 
						
							| 13 | 11 12 | eleqtrrd |  | 
						
							| 14 |  | fvco2 |  | 
						
							| 15 | 2 13 14 | syl2anc |  | 
						
							| 16 |  | lenco |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 |  | revfv |  | 
						
							| 22 | 21 | adantlr |  | 
						
							| 23 | 22 | fveq2d |  | 
						
							| 24 | 15 20 23 | 3eqtr4d |  | 
						
							| 25 | 24 | mpteq2dva |  | 
						
							| 26 | 16 | oveq2d |  | 
						
							| 27 | 26 | mpteq1d |  | 
						
							| 28 |  | revlen |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 30 | mpteq1d |  | 
						
							| 32 | 25 27 31 | 3eqtr4rd |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | revcl |  | 
						
							| 35 |  | wrdf |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | fcompt |  | 
						
							| 39 | 33 37 38 | syl2anc |  | 
						
							| 40 |  | ffun |  | 
						
							| 41 |  | simpl |  | 
						
							| 42 |  | cofunexg |  | 
						
							| 43 | 40 41 42 | syl2an2 |  | 
						
							| 44 |  | revval |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 | 32 39 45 | 3eqtr4d |  |