Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmsscmap.u | |
|
rhmsscmap.r | |
||
Assertion | rhmsscmap2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsscmap.u | |
|
2 | rhmsscmap.r | |
|
3 | ssidd | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | rhmf | |
7 | simpr | |
|
8 | fvex | |
|
9 | fvex | |
|
10 | 8 9 | pm3.2i | |
11 | elmapg | |
|
12 | 10 11 | mp1i | |
13 | 7 12 | mpbird | |
14 | 13 | ex | |
15 | 6 14 | syl5 | |
16 | 15 | ssrdv | |
17 | ovres | |
|
18 | 17 | adantl | |
19 | eqidd | |
|
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | oveqan12rd | |
23 | 22 | adantl | |
24 | simpl | |
|
25 | simpr | |
|
26 | ovexd | |
|
27 | 19 23 24 25 26 | ovmpod | |
28 | 27 | adantl | |
29 | 16 18 28 | 3sstr4d | |
30 | 29 | ralrimivva | |
31 | rhmfn | |
|
32 | 31 | a1i | |
33 | inss1 | |
|
34 | 2 33 | eqsstrdi | |
35 | xpss12 | |
|
36 | 34 34 35 | syl2anc | |
37 | fnssres | |
|
38 | 32 36 37 | syl2anc | |
39 | eqid | |
|
40 | ovex | |
|
41 | 39 40 | fnmpoi | |
42 | 41 | a1i | |
43 | incom | |
|
44 | inex1g | |
|
45 | 1 44 | syl | |
46 | 43 45 | eqeltrid | |
47 | 2 46 | eqeltrd | |
48 | 38 42 47 | isssc | |
49 | 3 30 48 | mpbir2and | |