Metamath Proof Explorer


Theorem rhmsscmap2

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)

Ref Expression
Hypotheses rhmsscmap.u φ U V
rhmsscmap.r φ R = Ring U
Assertion rhmsscmap2 φ RingHom R × R cat x R , y R Base y Base x

Proof

Step Hyp Ref Expression
1 rhmsscmap.u φ U V
2 rhmsscmap.r φ R = Ring U
3 ssidd φ R R
4 eqid Base a = Base a
5 eqid Base b = Base b
6 4 5 rhmf h a RingHom b h : Base a Base b
7 simpr φ a R b R h : Base a Base b h : Base a Base b
8 fvex Base b V
9 fvex Base a V
10 8 9 pm3.2i Base b V Base a V
11 elmapg Base b V Base a V h Base b Base a h : Base a Base b
12 10 11 mp1i φ a R b R h : Base a Base b h Base b Base a h : Base a Base b
13 7 12 mpbird φ a R b R h : Base a Base b h Base b Base a
14 13 ex φ a R b R h : Base a Base b h Base b Base a
15 6 14 syl5 φ a R b R h a RingHom b h Base b Base a
16 15 ssrdv φ a R b R a RingHom b Base b Base a
17 ovres a R b R a RingHom R × R b = a RingHom b
18 17 adantl φ a R b R a RingHom R × R b = a RingHom b
19 eqidd a R b R x R , y R Base y Base x = x R , y R Base y Base x
20 fveq2 y = b Base y = Base b
21 fveq2 x = a Base x = Base a
22 20 21 oveqan12rd x = a y = b Base y Base x = Base b Base a
23 22 adantl a R b R x = a y = b Base y Base x = Base b Base a
24 simpl a R b R a R
25 simpr a R b R b R
26 ovexd a R b R Base b Base a V
27 19 23 24 25 26 ovmpod a R b R a x R , y R Base y Base x b = Base b Base a
28 27 adantl φ a R b R a x R , y R Base y Base x b = Base b Base a
29 16 18 28 3sstr4d φ a R b R a RingHom R × R b a x R , y R Base y Base x b
30 29 ralrimivva φ a R b R a RingHom R × R b a x R , y R Base y Base x b
31 rhmfn RingHom Fn Ring × Ring
32 31 a1i φ RingHom Fn Ring × Ring
33 inss1 Ring U Ring
34 2 33 eqsstrdi φ R Ring
35 xpss12 R Ring R Ring R × R Ring × Ring
36 34 34 35 syl2anc φ R × R Ring × Ring
37 fnssres RingHom Fn Ring × Ring R × R Ring × Ring RingHom R × R Fn R × R
38 32 36 37 syl2anc φ RingHom R × R Fn R × R
39 eqid x R , y R Base y Base x = x R , y R Base y Base x
40 ovex Base y Base x V
41 39 40 fnmpoi x R , y R Base y Base x Fn R × R
42 41 a1i φ x R , y R Base y Base x Fn R × R
43 incom Ring U = U Ring
44 inex1g U V U Ring V
45 1 44 syl φ U Ring V
46 43 45 eqeltrid φ Ring U V
47 2 46 eqeltrd φ R V
48 38 42 47 isssc φ RingHom R × R cat x R , y R Base y Base x R R a R b R a RingHom R × R b a x R , y R Base y Base x b
49 3 30 48 mpbir2and φ RingHom R × R cat x R , y R Base y Base x