Metamath Proof Explorer


Theorem rhmsscmap2

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)

Ref Expression
Hypotheses rhmsscmap.u φUV
rhmsscmap.r φR=RingU
Assertion rhmsscmap2 φRingHomR×RcatxR,yRBaseyBasex

Proof

Step Hyp Ref Expression
1 rhmsscmap.u φUV
2 rhmsscmap.r φR=RingU
3 ssidd φRR
4 eqid Basea=Basea
5 eqid Baseb=Baseb
6 4 5 rhmf haRingHombh:BaseaBaseb
7 simpr φaRbRh:BaseaBasebh:BaseaBaseb
8 fvex BasebV
9 fvex BaseaV
10 8 9 pm3.2i BasebVBaseaV
11 elmapg BasebVBaseaVhBasebBaseah:BaseaBaseb
12 10 11 mp1i φaRbRh:BaseaBasebhBasebBaseah:BaseaBaseb
13 7 12 mpbird φaRbRh:BaseaBasebhBasebBasea
14 13 ex φaRbRh:BaseaBasebhBasebBasea
15 6 14 syl5 φaRbRhaRingHombhBasebBasea
16 15 ssrdv φaRbRaRingHombBasebBasea
17 ovres aRbRaRingHomR×Rb=aRingHomb
18 17 adantl φaRbRaRingHomR×Rb=aRingHomb
19 eqidd aRbRxR,yRBaseyBasex=xR,yRBaseyBasex
20 fveq2 y=bBasey=Baseb
21 fveq2 x=aBasex=Basea
22 20 21 oveqan12rd x=ay=bBaseyBasex=BasebBasea
23 22 adantl aRbRx=ay=bBaseyBasex=BasebBasea
24 simpl aRbRaR
25 simpr aRbRbR
26 ovexd aRbRBasebBaseaV
27 19 23 24 25 26 ovmpod aRbRaxR,yRBaseyBasexb=BasebBasea
28 27 adantl φaRbRaxR,yRBaseyBasexb=BasebBasea
29 16 18 28 3sstr4d φaRbRaRingHomR×RbaxR,yRBaseyBasexb
30 29 ralrimivva φaRbRaRingHomR×RbaxR,yRBaseyBasexb
31 rhmfn RingHomFnRing×Ring
32 31 a1i φRingHomFnRing×Ring
33 inss1 RingURing
34 2 33 eqsstrdi φRRing
35 xpss12 RRingRRingR×RRing×Ring
36 34 34 35 syl2anc φR×RRing×Ring
37 fnssres RingHomFnRing×RingR×RRing×RingRingHomR×RFnR×R
38 32 36 37 syl2anc φRingHomR×RFnR×R
39 eqid xR,yRBaseyBasex=xR,yRBaseyBasex
40 ovex BaseyBasexV
41 39 40 fnmpoi xR,yRBaseyBasexFnR×R
42 41 a1i φxR,yRBaseyBasexFnR×R
43 incom RingU=URing
44 inex1g UVURingV
45 1 44 syl φURingV
46 43 45 eqeltrid φRingUV
47 2 46 eqeltrd φRV
48 38 42 47 isssc φRingHomR×RcatxR,yRBaseyBasexRRaRbRaRingHomR×RbaxR,yRBaseyBasexb
49 3 30 48 mpbir2and φRingHomR×RcatxR,yRBaseyBasex