Metamath Proof Explorer


Theorem rmxyelqirr

Description: The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof shortened by SN, 23-Dec-2024)

Ref Expression
Assertion rmxyelqirr A2NA+A21Na|c0da=c+A21d

Proof

Step Hyp Ref Expression
1 rmspecnonsq A2A21
2 1 adantr A2NA21
3 pell14qrval A21Pell14QRA21=a|c0da=c+A21dc2A21d2=1
4 2 3 syl A2NPell14QRA21=a|c0da=c+A21dc2A21d2=1
5 rabssab a|c0da=c+A21dc2A21d2=1a|c0da=c+A21dc2A21d2=1
6 simpl a=c+A21dc2A21d2=1a=c+A21d
7 6 reximi da=c+A21dc2A21d2=1da=c+A21d
8 7 reximi c0da=c+A21dc2A21d2=1c0da=c+A21d
9 8 ss2abi a|c0da=c+A21dc2A21d2=1a|c0da=c+A21d
10 5 9 sstri a|c0da=c+A21dc2A21d2=1a|c0da=c+A21d
11 4 10 eqsstrdi A2NPell14QRA21a|c0da=c+A21d
12 simpr A2NN
13 rmspecfund A2PellFundA21=A+A21
14 13 adantr A2NPellFundA21=A+A21
15 14 eqcomd A2NA+A21=PellFundA21
16 15 oveq1d A2NA+A21N=PellFundA21N
17 oveq2 a=NPellFundA21a=PellFundA21N
18 17 rspceeqv NA+A21N=PellFundA21NaA+A21N=PellFundA21a
19 12 16 18 syl2anc A2NaA+A21N=PellFundA21a
20 pellfund14b A21A+A21NPell14QRA21aA+A21N=PellFundA21a
21 2 20 syl A2NA+A21NPell14QRA21aA+A21N=PellFundA21a
22 19 21 mpbird A2NA+A21NPell14QRA21
23 11 22 sseldd A2NA+A21Na|c0da=c+A21d