Metamath Proof Explorer


Theorem rngcsect

Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020)

Ref Expression
Hypotheses rngcsect.c C=RngCatU
rngcsect.b B=BaseC
rngcsect.u φUV
rngcsect.x φXB
rngcsect.y φYB
rngcsect.e E=BaseX
rngcsect.n S=SectC
Assertion rngcsect φFXSYGFXRngHomYGYRngHomXGF=IE

Proof

Step Hyp Ref Expression
1 rngcsect.c C=RngCatU
2 rngcsect.b B=BaseC
3 rngcsect.u φUV
4 rngcsect.x φXB
5 rngcsect.y φYB
6 rngcsect.e E=BaseX
7 rngcsect.n S=SectC
8 eqid HomC=HomC
9 eqid compC=compC
10 eqid IdC=IdC
11 1 rngccat UVCCat
12 3 11 syl φCCat
13 2 8 9 10 7 12 4 5 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
14 1 2 3 8 4 5 rngchom φXHomCY=XRngHomY
15 14 eleq2d φFXHomCYFXRngHomY
16 1 2 3 8 5 4 rngchom φYHomCX=YRngHomX
17 16 eleq2d φGYHomCXGYRngHomX
18 15 17 anbi12d φFXHomCYGYHomCXFXRngHomYGYRngHomX
19 18 anbi1d φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGXYcompCXF=IdCX
20 3 adantr φFXRngHomYGYRngHomXUV
21 4 adantr φFXRngHomYGYRngHomXXB
22 1 2 3 rngcbas φB=URng
23 22 eleq2d φXBXURng
24 inss1 URngU
25 24 a1i φURngU
26 25 sseld φXURngXU
27 23 26 sylbid φXBXU
28 27 adantr φFXRngHomYGYRngHomXXBXU
29 21 28 mpd φFXRngHomYGYRngHomXXU
30 5 adantr φFXRngHomYGYRngHomXYB
31 22 eleq2d φYBYURng
32 25 sseld φYURngYU
33 31 32 sylbid φYBYU
34 33 adantr φFXRngHomYGYRngHomXYBYU
35 30 34 mpd φFXRngHomYGYRngHomXYU
36 eqid BaseX=BaseX
37 eqid BaseY=BaseY
38 36 37 rnghmf FXRngHomYF:BaseXBaseY
39 38 adantr FXRngHomYGYRngHomXF:BaseXBaseY
40 39 adantl φFXRngHomYGYRngHomXF:BaseXBaseY
41 37 36 rnghmf GYRngHomXG:BaseYBaseX
42 41 adantl FXRngHomYGYRngHomXG:BaseYBaseX
43 42 adantl φFXRngHomYGYRngHomXG:BaseYBaseX
44 1 20 9 29 35 29 40 43 rngcco φFXRngHomYGYRngHomXGXYcompCXF=GF
45 1 2 10 3 4 6 rngcid φIdCX=IE
46 45 adantr φFXRngHomYGYRngHomXIdCX=IE
47 44 46 eqeq12d φFXRngHomYGYRngHomXGXYcompCXF=IdCXGF=IE
48 47 pm5.32da φFXRngHomYGYRngHomXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
49 19 48 bitrd φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
50 df-3an FXHomCYGYHomCXGXYcompCXF=IdCXFXHomCYGYHomCXGXYcompCXF=IdCX
51 df-3an FXRngHomYGYRngHomXGF=IEFXRngHomYGYRngHomXGF=IE
52 49 50 51 3bitr4g φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
53 13 52 bitrd φFXSYGFXRngHomYGYRngHomXGF=IE