Metamath Proof Explorer


Theorem rnghmsscmap

Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rnghmsscmap.u φUV
rnghmsscmap.r φR=RngU
Assertion rnghmsscmap φRngHomoR×RcatxU,yUBaseyBasex

Proof

Step Hyp Ref Expression
1 rnghmsscmap.u φUV
2 rnghmsscmap.r φR=RngU
3 inss2 RngUU
4 2 3 eqsstrdi φRU
5 eqid Basea=Basea
6 eqid Baseb=Baseb
7 5 6 rnghmf haRngHomobh:BaseaBaseb
8 simpr φaRbRh:BaseaBasebh:BaseaBaseb
9 fvex BasebV
10 fvex BaseaV
11 9 10 pm3.2i BasebVBaseaV
12 elmapg BasebVBaseaVhBasebBaseah:BaseaBaseb
13 11 12 mp1i φaRbRh:BaseaBasebhBasebBaseah:BaseaBaseb
14 8 13 mpbird φaRbRh:BaseaBasebhBasebBasea
15 14 ex φaRbRh:BaseaBasebhBasebBasea
16 7 15 syl5 φaRbRhaRngHomobhBasebBasea
17 16 ssrdv φaRbRaRngHomobBasebBasea
18 ovres aRbRaRngHomoR×Rb=aRngHomob
19 18 adantl φaRbRaRngHomoR×Rb=aRngHomob
20 eqidd φaRbRxU,yUBaseyBasex=xU,yUBaseyBasex
21 fveq2 y=bBasey=Baseb
22 fveq2 x=aBasex=Basea
23 21 22 oveqan12rd x=ay=bBaseyBasex=BasebBasea
24 23 adantl φaRbRx=ay=bBaseyBasex=BasebBasea
25 4 sseld φaRaU
26 25 com12 aRφaU
27 26 adantr aRbRφaU
28 27 impcom φaRbRaU
29 4 sseld φbRbU
30 29 com12 bRφbU
31 30 adantl aRbRφbU
32 31 impcom φaRbRbU
33 ovexd φaRbRBasebBaseaV
34 20 24 28 32 33 ovmpod φaRbRaxU,yUBaseyBasexb=BasebBasea
35 17 19 34 3sstr4d φaRbRaRngHomoR×RbaxU,yUBaseyBasexb
36 35 ralrimivva φaRbRaRngHomoR×RbaxU,yUBaseyBasexb
37 rnghmfn RngHomoFnRng×Rng
38 37 a1i φRngHomoFnRng×Rng
39 inss1 RngURng
40 2 39 eqsstrdi φRRng
41 xpss12 RRngRRngR×RRng×Rng
42 40 40 41 syl2anc φR×RRng×Rng
43 fnssres RngHomoFnRng×RngR×RRng×RngRngHomoR×RFnR×R
44 38 42 43 syl2anc φRngHomoR×RFnR×R
45 eqid xU,yUBaseyBasex=xU,yUBaseyBasex
46 ovex BaseyBasexV
47 45 46 fnmpoi xU,yUBaseyBasexFnU×U
48 47 a1i φxU,yUBaseyBasexFnU×U
49 elex UVUV
50 1 49 syl φUV
51 44 48 50 isssc φRngHomoR×RcatxU,yUBaseyBasexRUaRbRaRngHomoR×RbaxU,yUBaseyBasexb
52 4 36 51 mpbir2and φRngHomoR×RcatxU,yUBaseyBasex