| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
|
| 2 |
|
rpnnen2.2 |
|
| 3 |
|
rpnnen2.3 |
|
| 4 |
|
rpnnen2.4 |
|
| 5 |
|
rpnnen2.5 |
|
| 6 |
|
rpnnen2.6 |
|
| 7 |
|
simpr |
|
| 8 |
7 6
|
sylib |
|
| 9 |
|
eldifi |
|
| 10 |
|
ssel2 |
|
| 11 |
9 10
|
sylan2 |
|
| 12 |
2 4 11
|
syl2anc |
|
| 13 |
1
|
rpnnen2lem8 |
|
| 14 |
2 12 13
|
syl2anc |
|
| 15 |
|
1z |
|
| 16 |
|
nnz |
|
| 17 |
|
elfzm11 |
|
| 18 |
15 16 17
|
sylancr |
|
| 19 |
18
|
biimpa |
|
| 20 |
12 19
|
sylan |
|
| 21 |
20
|
simp3d |
|
| 22 |
|
elfznn |
|
| 23 |
|
breq1 |
|
| 24 |
|
eleq1w |
|
| 25 |
|
eleq1w |
|
| 26 |
24 25
|
bibi12d |
|
| 27 |
23 26
|
imbi12d |
|
| 28 |
27
|
rspccva |
|
| 29 |
5 22 28
|
syl2an |
|
| 30 |
21 29
|
mpd |
|
| 31 |
30
|
ifbid |
|
| 32 |
1
|
rpnnen2lem1 |
|
| 33 |
2 22 32
|
syl2an |
|
| 34 |
1
|
rpnnen2lem1 |
|
| 35 |
3 22 34
|
syl2an |
|
| 36 |
31 33 35
|
3eqtr4d |
|
| 37 |
36
|
sumeq2dv |
|
| 38 |
37
|
oveq1d |
|
| 39 |
14 38
|
eqtrd |
|
| 40 |
39
|
adantr |
|
| 41 |
1
|
rpnnen2lem8 |
|
| 42 |
3 12 41
|
syl2anc |
|
| 43 |
42
|
adantr |
|
| 44 |
8 40 43
|
3eqtr3d |
|
| 45 |
1
|
rpnnen2lem6 |
|
| 46 |
2 12 45
|
syl2anc |
|
| 47 |
1
|
rpnnen2lem6 |
|
| 48 |
3 12 47
|
syl2anc |
|
| 49 |
|
fzfid |
|
| 50 |
1
|
rpnnen2lem2 |
|
| 51 |
3 50
|
syl |
|
| 52 |
|
ffvelcdm |
|
| 53 |
51 22 52
|
syl2an |
|
| 54 |
49 53
|
fsumrecl |
|
| 55 |
|
readdcan |
|
| 56 |
46 48 54 55
|
syl3anc |
|
| 57 |
56
|
adantr |
|
| 58 |
44 57
|
mpbid |
|