Metamath Proof Explorer


Theorem rrndstprj1

Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X=I
rrndstprj1.1 M=abs2
Assertion rrndstprj1 IFinAIFXGXFAMGAFnIG

Proof

Step Hyp Ref Expression
1 rrnval.1 X=I
2 rrndstprj1.1 M=abs2
3 simpll IFinAIFXGXIFin
4 simprl IFinAIFXGXFX
5 4 1 eleqtrdi IFinAIFXGXFI
6 elmapi FIF:I
7 5 6 syl IFinAIFXGXF:I
8 7 ffvelcdmda IFinAIFXGXkIFk
9 simprr IFinAIFXGXGX
10 9 1 eleqtrdi IFinAIFXGXGI
11 elmapi GIG:I
12 10 11 syl IFinAIFXGXG:I
13 12 ffvelcdmda IFinAIFXGXkIGk
14 8 13 resubcld IFinAIFXGXkIFkGk
15 14 resqcld IFinAIFXGXkIFkGk2
16 14 sqge0d IFinAIFXGXkI0FkGk2
17 fveq2 k=AFk=FA
18 fveq2 k=AGk=GA
19 17 18 oveq12d k=AFkGk=FAGA
20 19 oveq1d k=AFkGk2=FAGA2
21 simplr IFinAIFXGXAI
22 3 15 16 20 21 fsumge1 IFinAIFXGXFAGA2kIFkGk2
23 7 21 ffvelcdmd IFinAIFXGXFA
24 12 21 ffvelcdmd IFinAIFXGXGA
25 23 24 resubcld IFinAIFXGXFAGA
26 absresq FAGAFAGA2=FAGA2
27 25 26 syl IFinAIFXGXFAGA2=FAGA2
28 3 15 fsumrecl IFinAIFXGXkIFkGk2
29 3 15 16 fsumge0 IFinAIFXGX0kIFkGk2
30 resqrtth kIFkGk20kIFkGk2kIFkGk22=kIFkGk2
31 28 29 30 syl2anc IFinAIFXGXkIFkGk22=kIFkGk2
32 22 27 31 3brtr4d IFinAIFXGXFAGA2kIFkGk22
33 25 recnd IFinAIFXGXFAGA
34 33 abscld IFinAIFXGXFAGA
35 28 29 resqrtcld IFinAIFXGXkIFkGk2
36 33 absge0d IFinAIFXGX0FAGA
37 28 29 sqrtge0d IFinAIFXGX0kIFkGk2
38 34 35 36 37 le2sqd IFinAIFXGXFAGAkIFkGk2FAGA2kIFkGk22
39 32 38 mpbird IFinAIFXGXFAGAkIFkGk2
40 2 remetdval FAGAFAMGA=FAGA
41 23 24 40 syl2anc IFinAIFXGXFAMGA=FAGA
42 1 rrnmval IFinFXGXFnIG=kIFkGk2
43 42 3expb IFinFXGXFnIG=kIFkGk2
44 43 adantlr IFinAIFXGXFnIG=kIFkGk2
45 39 41 44 3brtr4d IFinAIFXGXFAMGAFnIG