Metamath Proof Explorer


Theorem rrndstprj1

Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X = I
rrndstprj1.1 M = abs 2
Assertion rrndstprj1 I Fin A I F X G X F A M G A F n I G

Proof

Step Hyp Ref Expression
1 rrnval.1 X = I
2 rrndstprj1.1 M = abs 2
3 simpll I Fin A I F X G X I Fin
4 simprl I Fin A I F X G X F X
5 4 1 eleqtrdi I Fin A I F X G X F I
6 elmapi F I F : I
7 5 6 syl I Fin A I F X G X F : I
8 7 ffvelrnda I Fin A I F X G X k I F k
9 simprr I Fin A I F X G X G X
10 9 1 eleqtrdi I Fin A I F X G X G I
11 elmapi G I G : I
12 10 11 syl I Fin A I F X G X G : I
13 12 ffvelrnda I Fin A I F X G X k I G k
14 8 13 resubcld I Fin A I F X G X k I F k G k
15 14 resqcld I Fin A I F X G X k I F k G k 2
16 14 sqge0d I Fin A I F X G X k I 0 F k G k 2
17 fveq2 k = A F k = F A
18 fveq2 k = A G k = G A
19 17 18 oveq12d k = A F k G k = F A G A
20 19 oveq1d k = A F k G k 2 = F A G A 2
21 simplr I Fin A I F X G X A I
22 3 15 16 20 21 fsumge1 I Fin A I F X G X F A G A 2 k I F k G k 2
23 7 21 ffvelrnd I Fin A I F X G X F A
24 12 21 ffvelrnd I Fin A I F X G X G A
25 23 24 resubcld I Fin A I F X G X F A G A
26 absresq F A G A F A G A 2 = F A G A 2
27 25 26 syl I Fin A I F X G X F A G A 2 = F A G A 2
28 3 15 fsumrecl I Fin A I F X G X k I F k G k 2
29 3 15 16 fsumge0 I Fin A I F X G X 0 k I F k G k 2
30 resqrtth k I F k G k 2 0 k I F k G k 2 k I F k G k 2 2 = k I F k G k 2
31 28 29 30 syl2anc I Fin A I F X G X k I F k G k 2 2 = k I F k G k 2
32 22 27 31 3brtr4d I Fin A I F X G X F A G A 2 k I F k G k 2 2
33 25 recnd I Fin A I F X G X F A G A
34 33 abscld I Fin A I F X G X F A G A
35 28 29 resqrtcld I Fin A I F X G X k I F k G k 2
36 33 absge0d I Fin A I F X G X 0 F A G A
37 28 29 sqrtge0d I Fin A I F X G X 0 k I F k G k 2
38 34 35 36 37 le2sqd I Fin A I F X G X F A G A k I F k G k 2 F A G A 2 k I F k G k 2 2
39 32 38 mpbird I Fin A I F X G X F A G A k I F k G k 2
40 2 remetdval F A G A F A M G A = F A G A
41 23 24 40 syl2anc I Fin A I F X G X F A M G A = F A G A
42 1 rrnmval I Fin F X G X F n I G = k I F k G k 2
43 42 3expb I Fin F X G X F n I G = k I F k G k 2
44 43 adantlr I Fin A I F X G X F n I G = k I F k G k 2
45 39 41 44 3brtr4d I Fin A I F X G X F A M G A F n I G