| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrnval.1 |  | 
						
							| 2 |  | rrndstprj1.1 |  | 
						
							| 3 |  | simpll |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 | 4 1 | eleqtrdi |  | 
						
							| 6 |  | elmapi |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | ffvelcdmda |  | 
						
							| 9 |  | simprr |  | 
						
							| 10 | 9 1 | eleqtrdi |  | 
						
							| 11 |  | elmapi |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 12 | ffvelcdmda |  | 
						
							| 14 | 8 13 | resubcld |  | 
						
							| 15 | 14 | resqcld |  | 
						
							| 16 | 14 | sqge0d |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 | 17 18 | oveq12d |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 |  | simplr |  | 
						
							| 22 | 3 15 16 20 21 | fsumge1 |  | 
						
							| 23 | 7 21 | ffvelcdmd |  | 
						
							| 24 | 12 21 | ffvelcdmd |  | 
						
							| 25 | 23 24 | resubcld |  | 
						
							| 26 |  | absresq |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 3 15 | fsumrecl |  | 
						
							| 29 | 3 15 16 | fsumge0 |  | 
						
							| 30 |  | resqrtth |  | 
						
							| 31 | 28 29 30 | syl2anc |  | 
						
							| 32 | 22 27 31 | 3brtr4d |  | 
						
							| 33 | 25 | recnd |  | 
						
							| 34 | 33 | abscld |  | 
						
							| 35 | 28 29 | resqrtcld |  | 
						
							| 36 | 33 | absge0d |  | 
						
							| 37 | 28 29 | sqrtge0d |  | 
						
							| 38 | 34 35 36 37 | le2sqd |  | 
						
							| 39 | 32 38 | mpbird |  | 
						
							| 40 | 2 | remetdval |  | 
						
							| 41 | 23 24 40 | syl2anc |  | 
						
							| 42 | 1 | rrnmval |  | 
						
							| 43 | 42 | 3expb |  | 
						
							| 44 | 43 | adantlr |  | 
						
							| 45 | 39 41 44 | 3brtr4d |  |