Metamath Proof Explorer


Theorem salexct3

Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct3.a A=02
salexct3.s S=x𝒫A|xωAxω
salexct3.x X=rany01y
Assertion salexct3 SSAlgXS¬XS

Proof

Step Hyp Ref Expression
1 salexct3.a A=02
2 salexct3.s S=x𝒫A|xωAxω
3 salexct3.x X=rany01y
4 ovex 02V
5 1 4 eqeltri AV
6 5 a1i AV
7 6 2 salexct SSAlg
8 7 mptru SSAlg
9 0re 0
10 2re 2
11 9 10 pm3.2i 02
12 9 leidi 00
13 1le2 12
14 12 13 pm3.2i 0012
15 iccss 0200120102
16 11 14 15 mp2an 0102
17 id y01y01
18 16 17 sselid y01y02
19 18 1 eleqtrrdi y01yA
20 snelpwi yAy𝒫A
21 19 20 syl y01y𝒫A
22 snfi yFin
23 fict yFinyω
24 22 23 ax-mp yω
25 orc yωyωAyω
26 24 25 ax-mp yωAyω
27 26 a1i y01yωAyω
28 21 27 jca y01y𝒫AyωAyω
29 breq1 x=yxωyω
30 difeq2 x=yAx=Ay
31 30 breq1d x=yAxωAyω
32 29 31 orbi12d x=yxωAxωyωAyω
33 32 2 elrab2 ySy𝒫AyωAyω
34 28 33 sylibr y01yS
35 34 rgen y01yS
36 eqid y01y=y01y
37 36 rnmptss y01ySrany01yS
38 35 37 ax-mp rany01yS
39 3 38 eqsstri XS
40 3 unieqi X=rany01y
41 vsnex yV
42 41 rgenw y01yV
43 dfiun3g y01yVy01y=rany01y
44 42 43 ax-mp y01y=rany01y
45 44 eqcomi rany01y=y01y
46 iunid y01y=01
47 40 45 46 3eqtrri 01=X
48 47 eqcomi X=01
49 1 2 48 salexct2 ¬XS
50 8 39 49 3pm3.2i SSAlgXS¬XS