Metamath Proof Explorer


Theorem salgenval

Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenval XVSalGenX=sSAlg|s=XXs

Proof

Step Hyp Ref Expression
1 df-salgen SalGen=xVsSAlg|s=xxs
2 1 a1i XVSalGen=xVsSAlg|s=xxs
3 unieq x=Xx=X
4 3 eqeq2d x=Xs=xs=X
5 sseq1 x=XxsXs
6 4 5 anbi12d x=Xs=xxss=XXs
7 6 rabbidv x=XsSAlg|s=xxs=sSAlg|s=XXs
8 7 inteqd x=XsSAlg|s=xxs=sSAlg|s=XXs
9 8 adantl XVx=XsSAlg|s=xxs=sSAlg|s=XXs
10 elex XVXV
11 uniexg XVXV
12 pwsal XV𝒫XSAlg
13 11 12 syl XV𝒫XSAlg
14 unipw 𝒫X=X
15 14 a1i XV𝒫X=X
16 pwuni X𝒫X
17 16 a1i XVX𝒫X
18 13 15 17 jca32 XV𝒫XSAlg𝒫X=XX𝒫X
19 unieq s=𝒫Xs=𝒫X
20 19 eqeq1d s=𝒫Xs=X𝒫X=X
21 sseq2 s=𝒫XXsX𝒫X
22 20 21 anbi12d s=𝒫Xs=XXs𝒫X=XX𝒫X
23 22 elrab 𝒫XsSAlg|s=XXs𝒫XSAlg𝒫X=XX𝒫X
24 18 23 sylibr XV𝒫XsSAlg|s=XXs
25 24 ne0d XVsSAlg|s=XXs
26 intex sSAlg|s=XXssSAlg|s=XXsV
27 25 26 sylib XVsSAlg|s=XXsV
28 2 9 10 27 fvmptd XVSalGenX=sSAlg|s=XXs