| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatid.a |
|
| 2 |
|
scmatid.b |
|
| 3 |
|
scmatid.e |
|
| 4 |
|
scmatid.0 |
|
| 5 |
|
scmatid.s |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
3 1 2 6 7 5
|
scmatel |
|
| 9 |
3 1 2 6 7 5
|
scmatel |
|
| 10 |
|
oveq12 |
|
| 11 |
10
|
adantll |
|
| 12 |
|
simp-4l |
|
| 13 |
|
simplr |
|
| 14 |
13
|
anim1ci |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
1 3 4 6 7 15 16
|
scmatscmiddistr |
|
| 18 |
12 14 17
|
syl2anc |
|
| 19 |
|
simpl |
|
| 20 |
|
simplr |
|
| 21 |
|
simprr |
|
| 22 |
|
simpl |
|
| 23 |
22
|
adantl |
|
| 24 |
3 15
|
ringcl |
|
| 25 |
20 21 23 24
|
syl3anc |
|
| 26 |
1
|
matring |
|
| 27 |
2 6
|
ringidcl |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
adantr |
|
| 30 |
3 1 2 7
|
matvscl |
|
| 31 |
19 25 29 30
|
syl12anc |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
33
|
adantl |
|
| 35 |
|
eqidd |
|
| 36 |
25 34 35
|
rspcedvd |
|
| 37 |
3 1 2 6 7 5
|
scmatel |
|
| 38 |
37
|
adantr |
|
| 39 |
31 36 38
|
mpbir2and |
|
| 40 |
39
|
exp32 |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
imp |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
imp |
|
| 45 |
18 44
|
eqeltrd |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
adantr |
|
| 48 |
11 47
|
eqeltrd |
|
| 49 |
48
|
exp31 |
|
| 50 |
49
|
rexlimdva |
|
| 51 |
50
|
expimpd |
|
| 52 |
51
|
com23 |
|
| 53 |
52
|
rexlimdva |
|
| 54 |
53
|
expimpd |
|
| 55 |
9 54
|
sylbid |
|
| 56 |
55
|
com23 |
|
| 57 |
8 56
|
sylbid |
|
| 58 |
57
|
imp32 |
|