Description: Antisymmetry law for segment comparison. Theorem 5.9 of Schwabhauser p. 42. (Contributed by Scott Fenton, 14-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | segleantisym | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsegle | |
|
2 | brsegle2 | |
|
3 | 2 | 3com23 | |
4 | 1 3 | anbi12d | |
5 | reeanv | |
|
6 | 4 5 | bitr4di | |
7 | simpl1 | |
|
8 | simpl3l | |
|
9 | simprr | |
|
10 | simprl | |
|
11 | simpl3r | |
|
12 | simprll | |
|
13 | simprrl | |
|
14 | 7 8 10 11 9 12 13 | btwnexchand | |
15 | simpl2l | |
|
16 | simpl2r | |
|
17 | simprrr | |
|
18 | simprlr | |
|
19 | 7 8 9 15 16 8 10 17 18 | cgrtrand | |
20 | 7 8 9 10 14 19 | endofsegidand | |
21 | opeq2 | |
|
22 | 21 | breq2d | |
23 | 21 | breq1d | |
24 | 22 23 | anbi12d | |
25 | 24 | anbi2d | |
26 | 25 | anbi2d | |
27 | simprrl | |
|
28 | 7 11 8 10 27 | btwncomand | |
29 | simprll | |
|
30 | 7 10 8 11 29 | btwncomand | |
31 | btwnswapid | |
|
32 | 7 11 10 8 31 | syl13anc | |
33 | 32 | adantr | |
34 | 28 30 33 | mp2and | |
35 | simprlr | |
|
36 | opeq2 | |
|
37 | 36 | breq2d | |
38 | 35 37 | syl5ibrcom | |
39 | 34 38 | mpd | |
40 | 26 39 | syl6bi | |
41 | 20 40 | mpcom | |
42 | 41 | exp31 | |
43 | 42 | rexlimdvv | |
44 | 6 43 | sylbid | |