Metamath Proof Explorer


Theorem setsstruct

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021) (Revised by AV, 14-Nov-2021)

Ref Expression
Assertion setsstruct EVIMGStructMNGsSetIEStructMifINNI

Proof

Step Hyp Ref Expression
1 isstruct GStructMNMNMNFunGdomGMN
2 simp2 MNMNGStructMNEVIMGStructMN
3 simp3l MNMNGStructMNEVIMEV
4 1z 1
5 nnge1 M1M
6 eluzuzle 11MIMI1
7 4 5 6 sylancr MIMI1
8 elnnuz II1
9 7 8 syl6ibr MIMI
10 9 adantld MEVIMI
11 10 3ad2ant1 MNMNEVIMI
12 11 a1d MNMNGStructMNEVIMI
13 12 3imp MNMNGStructMNEVIMI
14 2 3 13 3jca MNMNGStructMNEVIMGStructMNEVI
15 op1stg MN1stMN=M
16 15 breq2d MNI1stMNIM
17 eqidd MNI=I
18 16 17 15 ifbieq12d MNifI1stMNI1stMN=ifIMIM
19 18 3adant3 MNMNifI1stMNI1stMN=ifIMIM
20 19 adantr MNMNEVIMifI1stMNI1stMN=ifIMIM
21 eluz2 IMMIMI
22 zre II
23 22 rexrd II*
24 23 3ad2ant2 MIMII*
25 zre MM
26 25 rexrd MM*
27 26 3ad2ant1 MIMIM*
28 simp3 MIMIMI
29 24 27 28 3jca MIMII*M*MI
30 29 a1d MIMIMNMNI*M*MI
31 21 30 sylbi IMMNMNI*M*MI
32 31 adantl EVIMMNMNI*M*MI
33 32 impcom MNMNEVIMI*M*MI
34 xrmineq I*M*MIifIMIM=M
35 33 34 syl MNMNEVIMifIMIM=M
36 20 35 eqtr2d MNMNEVIMM=ifI1stMNI1stMN
37 36 3adant2 MNMNGStructMNEVIMM=ifI1stMNI1stMN
38 op2ndg MN2ndMN=N
39 38 eqcomd MNN=2ndMN
40 39 breq2d MNINI2ndMN
41 40 39 17 ifbieq12d MNifINNI=ifI2ndMN2ndMNI
42 41 3adant3 MNMNifINNI=ifI2ndMN2ndMNI
43 42 3ad2ant1 MNMNGStructMNEVIMifINNI=ifI2ndMN2ndMNI
44 37 43 opeq12d MNMNGStructMNEVIMMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
45 14 44 jca MNMNGStructMNEVIMGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
46 45 3exp MNMNGStructMNEVIMGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
47 46 3ad2ant1 MNMNFunGdomGMNGStructMNEVIMGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
48 1 47 sylbi GStructMNGStructMNEVIMGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
49 48 pm2.43i GStructMNEVIMGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
50 49 expdcom EVIMGStructMNGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
51 50 3imp EVIMGStructMNGStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNI
52 setsstruct2 GStructMNEVIMifINNI=ifI1stMNI1stMNifI2ndMN2ndMNIGsSetIEStructMifINNI
53 51 52 syl EVIMGStructMNGsSetIEStructMifINNI