Metamath Proof Explorer


Theorem sge0resrnlem

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrnlem.a φ A V
sge0resrnlem.f φ F : B 0 +∞
sge0resrnlem.g φ G : A B
sge0resrnlem.x φ X 𝒫 A
sge0resrnlem.f1o φ G X : X 1-1 onto ran G
Assertion sge0resrnlem φ sum^ F ran G sum^ F G

Proof

Step Hyp Ref Expression
1 sge0resrnlem.a φ A V
2 sge0resrnlem.f φ F : B 0 +∞
3 sge0resrnlem.g φ G : A B
4 sge0resrnlem.x φ X 𝒫 A
5 sge0resrnlem.f1o φ G X : X 1-1 onto ran G
6 nfv y φ
7 nfv x φ
8 fveq2 y = G x F y = F G x
9 fvres x X G X x = G x
10 9 adantl φ x X G X x = G x
11 2 adantr φ y ran G F : B 0 +∞
12 3 frnd φ ran G B
13 12 adantr φ y ran G ran G B
14 simpr φ y ran G y ran G
15 13 14 sseldd φ y ran G y B
16 11 15 ffvelrnd φ y ran G F y 0 +∞
17 6 7 8 4 5 10 16 sge0f1o φ sum^ y ran G F y = sum^ x X F G x
18 2 12 feqresmpt φ F ran G = y ran G F y
19 18 fveq2d φ sum^ F ran G = sum^ y ran G F y
20 fcompt F : B 0 +∞ G : A B F G = x A F G x
21 2 3 20 syl2anc φ F G = x A F G x
22 21 reseq1d φ F G X = x A F G x X
23 4 elpwid φ X A
24 23 resmptd φ x A F G x X = x X F G x
25 22 24 eqtrd φ F G X = x X F G x
26 25 fveq2d φ sum^ F G X = sum^ x X F G x
27 17 19 26 3eqtr4d φ sum^ F ran G = sum^ F G X
28 fco F : B 0 +∞ G : A B F G : A 0 +∞
29 2 3 28 syl2anc φ F G : A 0 +∞
30 1 29 sge0less φ sum^ F G X sum^ F G
31 27 30 eqbrtrd φ sum^ F ran G sum^ F G