Metamath Proof Explorer


Theorem sge0resrnlem

Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0resrnlem.a φAV
sge0resrnlem.f φF:B0+∞
sge0resrnlem.g φG:AB
sge0resrnlem.x φX𝒫A
sge0resrnlem.f1o φGX:X1-1 ontoranG
Assertion sge0resrnlem φsum^FranGsum^FG

Proof

Step Hyp Ref Expression
1 sge0resrnlem.a φAV
2 sge0resrnlem.f φF:B0+∞
3 sge0resrnlem.g φG:AB
4 sge0resrnlem.x φX𝒫A
5 sge0resrnlem.f1o φGX:X1-1 ontoranG
6 nfv yφ
7 nfv xφ
8 fveq2 y=GxFy=FGx
9 fvres xXGXx=Gx
10 9 adantl φxXGXx=Gx
11 2 adantr φyranGF:B0+∞
12 3 frnd φranGB
13 12 adantr φyranGranGB
14 simpr φyranGyranG
15 13 14 sseldd φyranGyB
16 11 15 ffvelcdmd φyranGFy0+∞
17 6 7 8 4 5 10 16 sge0f1o φsum^yranGFy=sum^xXFGx
18 2 12 feqresmpt φFranG=yranGFy
19 18 fveq2d φsum^FranG=sum^yranGFy
20 fcompt F:B0+∞G:ABFG=xAFGx
21 2 3 20 syl2anc φFG=xAFGx
22 21 reseq1d φFGX=xAFGxX
23 4 elpwid φXA
24 23 resmptd φxAFGxX=xXFGx
25 22 24 eqtrd φFGX=xXFGx
26 25 fveq2d φsum^FGX=sum^xXFGx
27 17 19 26 3eqtr4d φsum^FranG=sum^FGX
28 fco F:B0+∞G:ABFG:A0+∞
29 2 3 28 syl2anc φFG:A0+∞
30 1 29 sge0less φsum^FGXsum^FG
31 27 30 eqbrtrd φsum^FranGsum^FG