Metamath Proof Explorer


Theorem sge0ss

Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ss.kph k φ
sge0ss.b φ B V
sge0ss.a φ A B
sge0ss.c φ k A C 0 +∞
sge0ss.c0 φ k B A C = 0
Assertion sge0ss φ sum^ k A C = sum^ k B C

Proof

Step Hyp Ref Expression
1 sge0ss.kph k φ
2 sge0ss.b φ B V
3 sge0ss.a φ A B
4 sge0ss.c φ k A C 0 +∞
5 sge0ss.c0 φ k B A C = 0
6 ssexg A B B V A V
7 3 2 6 syl2anc φ A V
8 difexg B V B A V
9 2 8 syl φ B A V
10 disjdif A B A =
11 10 a1i φ A B A =
12 0e0iccpnf 0 0 +∞
13 12 a1i φ k B A 0 0 +∞
14 5 13 eqeltrd φ k B A C 0 +∞
15 1 7 9 11 4 14 sge0splitmpt φ sum^ k A B A C = sum^ k A C + 𝑒 sum^ k B A C
16 15 eqcomd φ sum^ k A C + 𝑒 sum^ k B A C = sum^ k A B A C
17 1 5 mpteq2da φ k B A C = k B A 0
18 17 fveq2d φ sum^ k B A C = sum^ k B A 0
19 1 9 sge0z φ sum^ k B A 0 = 0
20 18 19 eqtrd φ sum^ k B A C = 0
21 20 oveq2d φ sum^ k A C + 𝑒 sum^ k B A C = sum^ k A C + 𝑒 0
22 eqid k A C = k A C
23 1 4 22 fmptdf φ k A C : A 0 +∞
24 7 23 sge0xrcl φ sum^ k A C *
25 xaddid1 sum^ k A C * sum^ k A C + 𝑒 0 = sum^ k A C
26 24 25 syl φ sum^ k A C + 𝑒 0 = sum^ k A C
27 eqidd φ sum^ k A C = sum^ k A C
28 21 26 27 3eqtrrd φ sum^ k A C = sum^ k A C + 𝑒 sum^ k B A C
29 undif A B A B A = B
30 3 29 sylib φ A B A = B
31 30 eqcomd φ B = A B A
32 31 mpteq1d φ k B C = k A B A C
33 32 fveq2d φ sum^ k B C = sum^ k A B A C
34 16 28 33 3eqtr4d φ sum^ k A C = sum^ k B C