Metamath Proof Explorer


Theorem sge0ss

Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ss.kph kφ
sge0ss.b φBV
sge0ss.a φAB
sge0ss.c φkAC0+∞
sge0ss.c0 φkBAC=0
Assertion sge0ss φsum^kAC=sum^kBC

Proof

Step Hyp Ref Expression
1 sge0ss.kph kφ
2 sge0ss.b φBV
3 sge0ss.a φAB
4 sge0ss.c φkAC0+∞
5 sge0ss.c0 φkBAC=0
6 ssexg ABBVAV
7 3 2 6 syl2anc φAV
8 2 difexd φBAV
9 disjdif ABA=
10 9 a1i φABA=
11 0e0iccpnf 00+∞
12 11 a1i φkBA00+∞
13 5 12 eqeltrd φkBAC0+∞
14 1 7 8 10 4 13 sge0splitmpt φsum^kABAC=sum^kAC+𝑒sum^kBAC
15 14 eqcomd φsum^kAC+𝑒sum^kBAC=sum^kABAC
16 1 5 mpteq2da φkBAC=kBA0
17 16 fveq2d φsum^kBAC=sum^kBA0
18 1 8 sge0z φsum^kBA0=0
19 17 18 eqtrd φsum^kBAC=0
20 19 oveq2d φsum^kAC+𝑒sum^kBAC=sum^kAC+𝑒0
21 eqid kAC=kAC
22 1 4 21 fmptdf φkAC:A0+∞
23 7 22 sge0xrcl φsum^kAC*
24 xaddrid sum^kAC*sum^kAC+𝑒0=sum^kAC
25 23 24 syl φsum^kAC+𝑒0=sum^kAC
26 eqidd φsum^kAC=sum^kAC
27 20 25 26 3eqtrrd φsum^kAC=sum^kAC+𝑒sum^kBAC
28 undif ABABA=B
29 3 28 sylib φABA=B
30 29 eqcomd φB=ABA
31 30 mpteq1d φkBC=kABAC
32 31 fveq2d φsum^kBC=sum^kABAC
33 15 27 32 3eqtr4d φsum^kAC=sum^kBC