Metamath Proof Explorer


Theorem sgmppw

Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion sgmppw APN0AσPN=k=0NPAk

Proof

Step Hyp Ref Expression
1 simp1 APN0A
2 simp2 APN0P
3 prmnn PP
4 2 3 syl APN0P
5 simp3 APN0N0
6 4 5 nnexpcld APN0PN
7 sgmval APNAσPN=nx|xPNnA
8 1 6 7 syl2anc APN0AσPN=nx|xPNnA
9 oveq1 n=PknA=PkA
10 fzfid APN00NFin
11 eqid i0NPi=i0NPi
12 11 dvdsppwf1o PN0i0NPi:0N1-1 ontox|xPN
13 2 5 12 syl2anc APN0i0NPi:0N1-1 ontox|xPN
14 oveq2 i=kPi=Pk
15 ovex PkV
16 14 11 15 fvmpt k0Ni0NPik=Pk
17 16 adantl APN0k0Ni0NPik=Pk
18 elrabi nx|xPNn
19 18 nncnd nx|xPNn
20 cxpcl nAnA
21 19 1 20 syl2anr APN0nx|xPNnA
22 9 10 13 17 21 fsumf1o APN0nx|xPNnA=k=0NPkA
23 elfznn0 k0Nk0
24 23 adantl APN0k0Nk0
25 24 nn0cnd APN0k0Nk
26 1 adantr APN0k0NA
27 25 26 mulcomd APN0k0NkA=Ak
28 27 oveq2d APN0k0NPkA=PAk
29 4 adantr APN0k0NP
30 29 nnrpd APN0k0NP+
31 24 nn0red APN0k0Nk
32 30 31 26 cxpmuld APN0k0NPkA=PkA
33 29 nncnd APN0k0NP
34 cxpexp Pk0Pk=Pk
35 33 24 34 syl2anc APN0k0NPk=Pk
36 35 oveq1d APN0k0NPkA=PkA
37 32 36 eqtrd APN0k0NPkA=PkA
38 33 26 24 cxpmul2d APN0k0NPAk=PAk
39 28 37 38 3eqtr3d APN0k0NPkA=PAk
40 39 sumeq2dv APN0k=0NPkA=k=0NPAk
41 8 22 40 3eqtrd APN0AσPN=k=0NPAk