Metamath Proof Explorer


Theorem sgoldbeven3prm

Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since ( N - 2 ) is even iff N is even, there would be primes p and q with ( N - 2 ) = ( p + q ) , and therefore N = ( ( p + q ) + 2 ) . (Contributed by AV, 24-Dec-2021)

Ref Expression
Assertion sgoldbeven3prm nEven4<nnGoldbachEvenNEven6NpqrN=p+q+r

Proof

Step Hyp Ref Expression
1 sbgoldbb nEven4<nnGoldbachEvennEven2<npqn=p+q
2 2p2e4 2+2=4
3 evenz NEvenN
4 3 zred NEvenN
5 4lt6 4<6
6 4re 4
7 6re 6
8 ltletr 46N4<66N4<N
9 6 7 8 mp3an12 N4<66N4<N
10 5 9 mpani N6N4<N
11 4 10 syl NEven6N4<N
12 11 imp NEven6N4<N
13 2 12 eqbrtrid NEven6N2+2<N
14 2re 2
15 14 a1i NEven6N2
16 4 adantr NEven6NN
17 15 15 16 ltaddsub2d NEven6N2+2<N2<N2
18 13 17 mpbid NEven6N2<N2
19 2evenALTV 2Even
20 emee NEven2EvenN2Even
21 19 20 mpan2 NEvenN2Even
22 breq2 n=N22<n2<N2
23 eqeq1 n=N2n=p+qN2=p+q
24 23 2rexbidv n=N2pqn=p+qpqN2=p+q
25 22 24 imbi12d n=N22<npqn=p+q2<N2pqN2=p+q
26 25 rspcv N2EvennEven2<npqn=p+q2<N2pqN2=p+q
27 2prm 2
28 27 a1i NEvenN2=p+q2
29 oveq2 r=2p+q+r=p+q+2
30 29 eqeq2d r=2N=p+q+rN=p+q+2
31 30 adantl NEvenN2=p+qr=2N=p+q+rN=p+q+2
32 3 zcnd NEvenN
33 2cnd NEven2
34 npcan N2N-2+2=N
35 34 eqcomd N2N=N-2+2
36 32 33 35 syl2anc NEvenN=N-2+2
37 36 adantr NEvenN2=p+qN=N-2+2
38 simpr NEvenN2=p+qN2=p+q
39 38 oveq1d NEvenN2=p+qN-2+2=p+q+2
40 37 39 eqtrd NEvenN2=p+qN=p+q+2
41 28 31 40 rspcedvd NEvenN2=p+qrN=p+q+r
42 41 ex NEvenN2=p+qrN=p+q+r
43 42 reximdv NEvenqN2=p+qqrN=p+q+r
44 43 reximdv NEvenpqN2=p+qpqrN=p+q+r
45 44 imim2d NEven2<N2pqN2=p+q2<N2pqrN=p+q+r
46 26 45 syl9r NEvenN2EvennEven2<npqn=p+q2<N2pqrN=p+q+r
47 21 46 mpd NEvennEven2<npqn=p+q2<N2pqrN=p+q+r
48 47 adantr NEven6NnEven2<npqn=p+q2<N2pqrN=p+q+r
49 18 48 mpid NEven6NnEven2<npqn=p+qpqrN=p+q+r
50 1 49 syl5com nEven4<nnGoldbachEvenNEven6NpqrN=p+q+r