Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since ( N - 2 ) is even iff N is even, there would be primes p and q with ( N - 2 ) = ( p + q ) , and therefore N = ( ( p + q ) + 2 ) . (Contributed by AV, 24-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sgoldbeven3prm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbgoldbb | |
|
2 | 2p2e4 | |
|
3 | evenz | |
|
4 | 3 | zred | |
5 | 4lt6 | |
|
6 | 4re | |
|
7 | 6re | |
|
8 | ltletr | |
|
9 | 6 7 8 | mp3an12 | |
10 | 5 9 | mpani | |
11 | 4 10 | syl | |
12 | 11 | imp | |
13 | 2 12 | eqbrtrid | |
14 | 2re | |
|
15 | 14 | a1i | |
16 | 4 | adantr | |
17 | 15 15 16 | ltaddsub2d | |
18 | 13 17 | mpbid | |
19 | 2evenALTV | |
|
20 | emee | |
|
21 | 19 20 | mpan2 | |
22 | breq2 | |
|
23 | eqeq1 | |
|
24 | 23 | 2rexbidv | |
25 | 22 24 | imbi12d | |
26 | 25 | rspcv | |
27 | 2prm | |
|
28 | 27 | a1i | |
29 | oveq2 | |
|
30 | 29 | eqeq2d | |
31 | 30 | adantl | |
32 | 3 | zcnd | |
33 | 2cnd | |
|
34 | npcan | |
|
35 | 34 | eqcomd | |
36 | 32 33 35 | syl2anc | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | 38 | oveq1d | |
40 | 37 39 | eqtrd | |
41 | 28 31 40 | rspcedvd | |
42 | 41 | ex | |
43 | 42 | reximdv | |
44 | 43 | reximdv | |
45 | 44 | imim2d | |
46 | 26 45 | syl9r | |
47 | 21 46 | mpd | |
48 | 47 | adantr | |
49 | 18 48 | mpid | |
50 | 1 49 | syl5com | |