Metamath Proof Explorer


Theorem shftfn

Description: Functionality and domain of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftfn FFnBAFshiftAFnx|xAB

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 relopabv Relxy|xxAFy
3 2 a1i FFnBARelxy|xxAFy
4 fnfun FFnBFunF
5 4 adantr FFnBAFunF
6 funmo FunF*wzAFw
7 vex zV
8 vex wV
9 eleq1w x=zxz
10 oveq1 x=zxA=zA
11 10 breq1d x=zxAFyzAFy
12 9 11 anbi12d x=zxxAFyzzAFy
13 breq2 y=wzAFyzAFw
14 13 anbi2d y=wzzAFyzzAFw
15 eqid xy|xxAFy=xy|xxAFy
16 7 8 12 14 15 brab zxy|xxAFywzzAFw
17 16 simprbi zxy|xxAFywzAFw
18 17 moimi *wzAFw*wzxy|xxAFyw
19 6 18 syl FunF*wzxy|xxAFyw
20 19 alrimiv FunFz*wzxy|xxAFyw
21 5 20 syl FFnBAz*wzxy|xxAFyw
22 dffun6 Funxy|xxAFyRelxy|xxAFyz*wzxy|xxAFyw
23 3 21 22 sylanbrc FFnBAFunxy|xxAFy
24 1 shftfval AFshiftA=xy|xxAFy
25 24 adantl FFnBAFshiftA=xy|xxAFy
26 25 funeqd FFnBAFunFshiftAFunxy|xxAFy
27 23 26 mpbird FFnBAFunFshiftA
28 1 shftdm AdomFshiftA=x|xAdomF
29 fndm FFnBdomF=B
30 29 eleq2d FFnBxAdomFxAB
31 30 rabbidv FFnBx|xAdomF=x|xAB
32 28 31 sylan9eqr FFnBAdomFshiftA=x|xAB
33 df-fn FshiftAFnx|xABFunFshiftAdomFshiftA=x|xAB
34 27 32 33 sylanbrc FFnBAFshiftAFnx|xAB