Metamath Proof Explorer


Theorem sigagenval

Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016)

Ref Expression
Assertion sigagenval AV𝛔A=ssigAlgebraA|As

Proof

Step Hyp Ref Expression
1 df-sigagen 𝛔=xVssigAlgebrax|xs
2 1 a1i AV𝛔=xVssigAlgebrax|xs
3 unieq x=Ax=A
4 3 fveq2d x=AsigAlgebrax=sigAlgebraA
5 sseq1 x=AxsAs
6 4 5 rabeqbidv x=AssigAlgebrax|xs=ssigAlgebraA|As
7 6 inteqd x=AssigAlgebrax|xs=ssigAlgebraA|As
8 7 adantl AVx=AssigAlgebrax|xs=ssigAlgebraA|As
9 elex AVAV
10 uniexg AVAV
11 pwsiga AV𝒫AsigAlgebraA
12 10 11 syl AV𝒫AsigAlgebraA
13 pwuni A𝒫A
14 12 13 jctir AV𝒫AsigAlgebraAA𝒫A
15 sseq2 s=𝒫AAsA𝒫A
16 15 elrab 𝒫AssigAlgebraA|As𝒫AsigAlgebraAA𝒫A
17 14 16 sylibr AV𝒫AssigAlgebraA|As
18 17 ne0d AVssigAlgebraA|As
19 intex ssigAlgebraA|AsssigAlgebraA|AsV
20 18 19 sylib AVssigAlgebraA|AsV
21 2 8 9 20 fvmptd AV𝛔A=ssigAlgebraA|As