Metamath Proof Explorer


Theorem sigainb

Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016)

Ref Expression
Assertion sigainb SransigAlgebraASS𝒫AsigAlgebraA

Proof

Step Hyp Ref Expression
1 inex1g SransigAlgebraS𝒫AV
2 1 adantr SransigAlgebraASS𝒫AV
3 inss2 S𝒫A𝒫A
4 3 a1i SransigAlgebraASS𝒫A𝒫A
5 simpr SransigAlgebraASAS
6 pwidg ASA𝒫A
7 5 6 syl SransigAlgebraASA𝒫A
8 5 7 elind SransigAlgebraASAS𝒫A
9 simpll SransigAlgebraASxS𝒫ASransigAlgebra
10 simplr SransigAlgebraASxS𝒫AAS
11 inss1 S𝒫AS
12 simpr SransigAlgebraASxS𝒫AxS𝒫A
13 11 12 sselid SransigAlgebraASxS𝒫AxS
14 difelsiga SransigAlgebraASxSAxS
15 9 10 13 14 syl3anc SransigAlgebraASxS𝒫AAxS
16 difss AxA
17 elpwg AxSAx𝒫AAxA
18 16 17 mpbiri AxSAx𝒫A
19 15 18 syl SransigAlgebraASxS𝒫AAx𝒫A
20 15 19 elind SransigAlgebraASxS𝒫AAxS𝒫A
21 20 ralrimiva SransigAlgebraASxS𝒫AAxS𝒫A
22 simplll SransigAlgebraASx𝒫S𝒫AxωSransigAlgebra
23 simplr SransigAlgebraASx𝒫S𝒫Axωx𝒫S𝒫A
24 elpwi x𝒫S𝒫AxS𝒫A
25 sstr xS𝒫AS𝒫ASxS
26 11 25 mpan2 xS𝒫AxS
27 23 24 26 3syl SransigAlgebraASx𝒫S𝒫AxωxS
28 elpwg x𝒫S𝒫Ax𝒫SxS
29 28 biimpar x𝒫S𝒫AxSx𝒫S
30 23 27 29 syl2anc SransigAlgebraASx𝒫S𝒫Axωx𝒫S
31 simpr SransigAlgebraASx𝒫S𝒫Axωxω
32 sigaclcu SransigAlgebrax𝒫SxωxS
33 22 30 31 32 syl3anc SransigAlgebraASx𝒫S𝒫AxωxS
34 sstr xS𝒫AS𝒫A𝒫Ax𝒫A
35 3 34 mpan2 xS𝒫Ax𝒫A
36 23 24 35 3syl SransigAlgebraASx𝒫S𝒫Axωx𝒫A
37 sspwuni x𝒫AxA
38 vuniex xV
39 38 elpw x𝒫AxA
40 37 39 bitr4i x𝒫Ax𝒫A
41 36 40 sylib SransigAlgebraASx𝒫S𝒫Axωx𝒫A
42 33 41 elind SransigAlgebraASx𝒫S𝒫AxωxS𝒫A
43 42 ex SransigAlgebraASx𝒫S𝒫AxωxS𝒫A
44 43 ralrimiva SransigAlgebraASx𝒫S𝒫AxωxS𝒫A
45 8 21 44 3jca SransigAlgebraASAS𝒫AxS𝒫AAxS𝒫Ax𝒫S𝒫AxωxS𝒫A
46 issiga S𝒫AVS𝒫AsigAlgebraAS𝒫A𝒫AAS𝒫AxS𝒫AAxS𝒫Ax𝒫S𝒫AxωxS𝒫A
47 46 biimpar S𝒫AVS𝒫A𝒫AAS𝒫AxS𝒫AAxS𝒫Ax𝒫S𝒫AxωxS𝒫AS𝒫AsigAlgebraA
48 2 4 45 47 syl12anc SransigAlgebraASS𝒫AsigAlgebraA