Metamath Proof Explorer


Theorem sigainb

Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016)

Ref Expression
Assertion sigainb S ran sigAlgebra A S S 𝒫 A sigAlgebra A

Proof

Step Hyp Ref Expression
1 inex1g S ran sigAlgebra S 𝒫 A V
2 1 adantr S ran sigAlgebra A S S 𝒫 A V
3 inss2 S 𝒫 A 𝒫 A
4 3 a1i S ran sigAlgebra A S S 𝒫 A 𝒫 A
5 simpr S ran sigAlgebra A S A S
6 pwidg A S A 𝒫 A
7 5 6 syl S ran sigAlgebra A S A 𝒫 A
8 5 7 elind S ran sigAlgebra A S A S 𝒫 A
9 simpll S ran sigAlgebra A S x S 𝒫 A S ran sigAlgebra
10 simplr S ran sigAlgebra A S x S 𝒫 A A S
11 inss1 S 𝒫 A S
12 simpr S ran sigAlgebra A S x S 𝒫 A x S 𝒫 A
13 11 12 sselid S ran sigAlgebra A S x S 𝒫 A x S
14 difelsiga S ran sigAlgebra A S x S A x S
15 9 10 13 14 syl3anc S ran sigAlgebra A S x S 𝒫 A A x S
16 difss A x A
17 elpwg A x S A x 𝒫 A A x A
18 16 17 mpbiri A x S A x 𝒫 A
19 15 18 syl S ran sigAlgebra A S x S 𝒫 A A x 𝒫 A
20 15 19 elind S ran sigAlgebra A S x S 𝒫 A A x S 𝒫 A
21 20 ralrimiva S ran sigAlgebra A S x S 𝒫 A A x S 𝒫 A
22 simplll S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω S ran sigAlgebra
23 simplr S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x 𝒫 S 𝒫 A
24 elpwi x 𝒫 S 𝒫 A x S 𝒫 A
25 sstr x S 𝒫 A S 𝒫 A S x S
26 11 25 mpan2 x S 𝒫 A x S
27 23 24 26 3syl S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x S
28 elpwg x 𝒫 S 𝒫 A x 𝒫 S x S
29 28 biimpar x 𝒫 S 𝒫 A x S x 𝒫 S
30 23 27 29 syl2anc S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x 𝒫 S
31 simpr S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x ω
32 sigaclcu S ran sigAlgebra x 𝒫 S x ω x S
33 22 30 31 32 syl3anc S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x S
34 sstr x S 𝒫 A S 𝒫 A 𝒫 A x 𝒫 A
35 3 34 mpan2 x S 𝒫 A x 𝒫 A
36 23 24 35 3syl S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x 𝒫 A
37 sspwuni x 𝒫 A x A
38 vuniex x V
39 38 elpw x 𝒫 A x A
40 37 39 bitr4i x 𝒫 A x 𝒫 A
41 36 40 sylib S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x 𝒫 A
42 33 41 elind S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x S 𝒫 A
43 42 ex S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x S 𝒫 A
44 43 ralrimiva S ran sigAlgebra A S x 𝒫 S 𝒫 A x ω x S 𝒫 A
45 8 21 44 3jca S ran sigAlgebra A S A S 𝒫 A x S 𝒫 A A x S 𝒫 A x 𝒫 S 𝒫 A x ω x S 𝒫 A
46 issiga S 𝒫 A V S 𝒫 A sigAlgebra A S 𝒫 A 𝒫 A A S 𝒫 A x S 𝒫 A A x S 𝒫 A x 𝒫 S 𝒫 A x ω x S 𝒫 A
47 46 biimpar S 𝒫 A V S 𝒫 A 𝒫 A A S 𝒫 A x S 𝒫 A A x S 𝒫 A x 𝒫 S 𝒫 A x ω x S 𝒫 A S 𝒫 A sigAlgebra A
48 2 4 45 47 syl12anc S ran sigAlgebra A S S 𝒫 A sigAlgebra A