Metamath Proof Explorer


Theorem siilem2

Description: Lemma for sii . (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses siii.1 X = BaseSet U
siii.6 N = norm CV U
siii.7 P = 𝑖OLD U
siii.9 U CPreHil OLD
siii.a A X
siii.b B X
siii2.3 M = - v U
siii2.4 S = 𝑠OLD U
Assertion siilem2 C C A P B 0 C A P B B P A = C N B 2 A P B C N B 2 N A N B

Proof

Step Hyp Ref Expression
1 siii.1 X = BaseSet U
2 siii.6 N = norm CV U
3 siii.7 P = 𝑖OLD U
4 siii.9 U CPreHil OLD
5 siii.a A X
6 siii.b B X
7 siii2.3 M = - v U
8 siii2.4 S = 𝑠OLD U
9 oveq1 C = if C C A P B 0 C A P B C 0 C N B 2 = if C C A P B 0 C A P B C 0 N B 2
10 9 eqeq2d C = if C C A P B 0 C A P B C 0 B P A = C N B 2 B P A = if C C A P B 0 C A P B C 0 N B 2
11 9 oveq2d C = if C C A P B 0 C A P B C 0 A P B C N B 2 = A P B if C C A P B 0 C A P B C 0 N B 2
12 11 fveq2d C = if C C A P B 0 C A P B C 0 A P B C N B 2 = A P B if C C A P B 0 C A P B C 0 N B 2
13 12 breq1d C = if C C A P B 0 C A P B C 0 A P B C N B 2 N A N B A P B if C C A P B 0 C A P B C 0 N B 2 N A N B
14 10 13 imbi12d C = if C C A P B 0 C A P B C 0 B P A = C N B 2 A P B C N B 2 N A N B B P A = if C C A P B 0 C A P B C 0 N B 2 A P B if C C A P B 0 C A P B C 0 N B 2 N A N B
15 eleq1 C = if C C A P B 0 C A P B C 0 C if C C A P B 0 C A P B C 0
16 oveq1 C = if C C A P B 0 C A P B C 0 C A P B = if C C A P B 0 C A P B C 0 A P B
17 16 eleq1d C = if C C A P B 0 C A P B C 0 C A P B if C C A P B 0 C A P B C 0 A P B
18 16 breq2d C = if C C A P B 0 C A P B C 0 0 C A P B 0 if C C A P B 0 C A P B C 0 A P B
19 15 17 18 3anbi123d C = if C C A P B 0 C A P B C 0 C C A P B 0 C A P B if C C A P B 0 C A P B C 0 if C C A P B 0 C A P B C 0 A P B 0 if C C A P B 0 C A P B C 0 A P B
20 eleq1 0 = if C C A P B 0 C A P B C 0 0 if C C A P B 0 C A P B C 0
21 oveq1 0 = if C C A P B 0 C A P B C 0 0 A P B = if C C A P B 0 C A P B C 0 A P B
22 21 eleq1d 0 = if C C A P B 0 C A P B C 0 0 A P B if C C A P B 0 C A P B C 0 A P B
23 21 breq2d 0 = if C C A P B 0 C A P B C 0 0 0 A P B 0 if C C A P B 0 C A P B C 0 A P B
24 20 22 23 3anbi123d 0 = if C C A P B 0 C A P B C 0 0 0 A P B 0 0 A P B if C C A P B 0 C A P B C 0 if C C A P B 0 C A P B C 0 A P B 0 if C C A P B 0 C A P B C 0 A P B
25 0cn 0
26 4 phnvi U NrmCVec
27 1 3 dipcl U NrmCVec A X B X A P B
28 26 5 6 27 mp3an A P B
29 28 mul02i 0 A P B = 0
30 0re 0
31 29 30 eqeltri 0 A P B
32 0le0 0 0
33 32 29 breqtrri 0 0 A P B
34 25 31 33 3pm3.2i 0 0 A P B 0 0 A P B
35 19 24 34 elimhyp if C C A P B 0 C A P B C 0 if C C A P B 0 C A P B C 0 A P B 0 if C C A P B 0 C A P B C 0 A P B
36 35 simp1i if C C A P B 0 C A P B C 0
37 35 simp2i if C C A P B 0 C A P B C 0 A P B
38 35 simp3i 0 if C C A P B 0 C A P B C 0 A P B
39 1 2 3 4 5 6 7 8 36 37 38 siilem1 B P A = if C C A P B 0 C A P B C 0 N B 2 A P B if C C A P B 0 C A P B C 0 N B 2 N A N B
40 14 39 dedth C C A P B 0 C A P B B P A = C N B 2 A P B C N B 2 N A N B