Metamath Proof Explorer


Theorem siilem2

Description: Lemma for sii . (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses siii.1 X=BaseSetU
siii.6 N=normCVU
siii.7 P=𝑖OLDU
siii.9 UCPreHilOLD
siii.a AX
siii.b BX
siii2.3 M=-vU
siii2.4 S=𝑠OLDU
Assertion siilem2 CCAPB0CAPBBPA=CNB2APBCNB2NANB

Proof

Step Hyp Ref Expression
1 siii.1 X=BaseSetU
2 siii.6 N=normCVU
3 siii.7 P=𝑖OLDU
4 siii.9 UCPreHilOLD
5 siii.a AX
6 siii.b BX
7 siii2.3 M=-vU
8 siii2.4 S=𝑠OLDU
9 oveq1 C=ifCCAPB0CAPBC0CNB2=ifCCAPB0CAPBC0NB2
10 9 eqeq2d C=ifCCAPB0CAPBC0BPA=CNB2BPA=ifCCAPB0CAPBC0NB2
11 9 oveq2d C=ifCCAPB0CAPBC0APBCNB2=APBifCCAPB0CAPBC0NB2
12 11 fveq2d C=ifCCAPB0CAPBC0APBCNB2=APBifCCAPB0CAPBC0NB2
13 12 breq1d C=ifCCAPB0CAPBC0APBCNB2NANBAPBifCCAPB0CAPBC0NB2NANB
14 10 13 imbi12d C=ifCCAPB0CAPBC0BPA=CNB2APBCNB2NANBBPA=ifCCAPB0CAPBC0NB2APBifCCAPB0CAPBC0NB2NANB
15 eleq1 C=ifCCAPB0CAPBC0CifCCAPB0CAPBC0
16 oveq1 C=ifCCAPB0CAPBC0CAPB=ifCCAPB0CAPBC0APB
17 16 eleq1d C=ifCCAPB0CAPBC0CAPBifCCAPB0CAPBC0APB
18 16 breq2d C=ifCCAPB0CAPBC00CAPB0ifCCAPB0CAPBC0APB
19 15 17 18 3anbi123d C=ifCCAPB0CAPBC0CCAPB0CAPBifCCAPB0CAPBC0ifCCAPB0CAPBC0APB0ifCCAPB0CAPBC0APB
20 eleq1 0=ifCCAPB0CAPBC00ifCCAPB0CAPBC0
21 oveq1 0=ifCCAPB0CAPBC00APB=ifCCAPB0CAPBC0APB
22 21 eleq1d 0=ifCCAPB0CAPBC00APBifCCAPB0CAPBC0APB
23 21 breq2d 0=ifCCAPB0CAPBC000APB0ifCCAPB0CAPBC0APB
24 20 22 23 3anbi123d 0=ifCCAPB0CAPBC000APB00APBifCCAPB0CAPBC0ifCCAPB0CAPBC0APB0ifCCAPB0CAPBC0APB
25 0cn 0
26 4 phnvi UNrmCVec
27 1 3 dipcl UNrmCVecAXBXAPB
28 26 5 6 27 mp3an APB
29 28 mul02i 0APB=0
30 0re 0
31 29 30 eqeltri 0APB
32 0le0 00
33 32 29 breqtrri 00APB
34 25 31 33 3pm3.2i 00APB00APB
35 19 24 34 elimhyp ifCCAPB0CAPBC0ifCCAPB0CAPBC0APB0ifCCAPB0CAPBC0APB
36 35 simp1i ifCCAPB0CAPBC0
37 35 simp2i ifCCAPB0CAPBC0APB
38 35 simp3i 0ifCCAPB0CAPBC0APB
39 1 2 3 4 5 6 7 8 36 37 38 siilem1 BPA=ifCCAPB0CAPBC0NB2APBifCCAPB0CAPBC0NB2NANB
40 14 39 dedth CCAPB0CAPBBPA=CNB2APBCNB2NANB