Metamath Proof Explorer


Theorem sincosq3sgn

Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq3sgn Aπ3π2sinA<0cosA<0

Proof

Step Hyp Ref Expression
1 pire π
2 3re 3
3 halfpire π2
4 2 3 remulcli 3π2
5 rexr ππ*
6 rexr 3π23π2*
7 elioo2 π*3π2*Aπ3π2Aπ<AA<3π2
8 5 6 7 syl2an π3π2Aπ3π2Aπ<AA<3π2
9 1 4 8 mp2an Aπ3π2Aπ<AA<3π2
10 pidiv2halves π2+π2=π
11 10 breq1i π2+π2<Aπ<A
12 ltaddsub π2π2Aπ2+π2<Aπ2<Aπ2
13 3 3 12 mp3an12 Aπ2+π2<Aπ2<Aπ2
14 11 13 bitr3id Aπ<Aπ2<Aπ2
15 ltsubadd Aπ2πAπ2<πA<π+π2
16 3 1 15 mp3an23 AAπ2<πA<π+π2
17 df-3 3=2+1
18 17 oveq1i 3π2=2+1π2
19 2cn 2
20 ax-1cn 1
21 3 recni π2
22 19 20 21 adddiri 2+1π2=2π2+1π2
23 1 recni π
24 2ne0 20
25 23 19 24 divcan2i 2π2=π
26 21 mullidi 1π2=π2
27 25 26 oveq12i 2π2+1π2=π+π2
28 18 22 27 3eqtrri π+π2=3π2
29 28 breq2i A<π+π2A<3π2
30 16 29 bitr2di AA<3π2Aπ2<π
31 14 30 anbi12d Aπ<AA<3π2π2<Aπ2Aπ2<π
32 resubcl Aπ2Aπ2
33 3 32 mpan2 AAπ2
34 sincosq2sgn Aπ2π2π0<sinAπ2cosAπ2<0
35 rexr π2π2*
36 elioo2 π2*π*Aπ2π2πAπ2π2<Aπ2Aπ2<π
37 35 5 36 syl2an π2πAπ2π2πAπ2π2<Aπ2Aπ2<π
38 3 1 37 mp2an Aπ2π2πAπ2π2<Aπ2Aπ2<π
39 ancom 0<sinAπ2cosAπ2<0cosAπ2<00<sinAπ2
40 34 38 39 3imtr3i Aπ2π2<Aπ2Aπ2<πcosAπ2<00<sinAπ2
41 33 40 syl3an1 Aπ2<Aπ2Aπ2<πcosAπ2<00<sinAπ2
42 41 3expib Aπ2<Aπ2Aπ2<πcosAπ2<00<sinAπ2
43 31 42 sylbid Aπ<AA<3π2cosAπ2<00<sinAπ2
44 33 resincld AsinAπ2
45 44 lt0neg2d A0<sinAπ2sinAπ2<0
46 45 anbi2d AcosAπ2<00<sinAπ2cosAπ2<0sinAπ2<0
47 43 46 sylibd Aπ<AA<3π2cosAπ2<0sinAπ2<0
48 recn AA
49 pncan3 π2Aπ2+A-π2=A
50 21 48 49 sylancr Aπ2+A-π2=A
51 50 fveq2d Asinπ2+A-π2=sinA
52 33 recnd AAπ2
53 sinhalfpip Aπ2sinπ2+A-π2=cosAπ2
54 52 53 syl Asinπ2+A-π2=cosAπ2
55 51 54 eqtr3d AsinA=cosAπ2
56 55 breq1d AsinA<0cosAπ2<0
57 50 fveq2d Acosπ2+A-π2=cosA
58 coshalfpip Aπ2cosπ2+A-π2=sinAπ2
59 52 58 syl Acosπ2+A-π2=sinAπ2
60 57 59 eqtr3d AcosA=sinAπ2
61 60 breq1d AcosA<0sinAπ2<0
62 56 61 anbi12d AsinA<0cosA<0cosAπ2<0sinAπ2<0
63 47 62 sylibrd Aπ<AA<3π2sinA<0cosA<0
64 63 3impib Aπ<AA<3π2sinA<0cosA<0
65 9 64 sylbi Aπ3π2sinA<0cosA<0