Metamath Proof Explorer


Theorem sincossq

Description: Sine squared plus cosine squared is 1. Equation 17 of Gleason p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006)

Ref Expression
Assertion sincossq AsinA2+cosA2=1

Proof

Step Hyp Ref Expression
1 negcl AA
2 cosadd AAcosA+A=cosAcosAsinAsinA
3 1 2 mpdan AcosA+A=cosAcosAsinAsinA
4 negid AA+A=0
5 4 fveq2d AcosA+A=cos0
6 cos0 cos0=1
7 5 6 eqtrdi AcosA+A=1
8 sincl AsinA
9 8 sqcld AsinA2
10 coscl AcosA
11 10 sqcld AcosA2
12 9 11 addcomd AsinA2+cosA2=cosA2+sinA2
13 10 sqvald AcosA2=cosAcosA
14 cosneg AcosA=cosA
15 14 oveq2d AcosAcosA=cosAcosA
16 13 15 eqtr4d AcosA2=cosAcosA
17 8 sqvald AsinA2=sinAsinA
18 sinneg AsinA=sinA
19 18 negeqd AsinA=sinA
20 8 negnegd AsinA=sinA
21 19 20 eqtrd AsinA=sinA
22 21 oveq2d AsinAsinA=sinAsinA
23 17 22 eqtr4d AsinA2=sinAsinA
24 1 sincld AsinA
25 8 24 mulneg2d AsinAsinA=sinAsinA
26 23 25 eqtrd AsinA2=sinAsinA
27 16 26 oveq12d AcosA2+sinA2=cosAcosA+sinAsinA
28 1 coscld AcosA
29 10 28 mulcld AcosAcosA
30 8 24 mulcld AsinAsinA
31 29 30 negsubd AcosAcosA+sinAsinA=cosAcosAsinAsinA
32 12 27 31 3eqtrrd AcosAcosAsinAsinA=sinA2+cosA2
33 3 7 32 3eqtr3rd AsinA2+cosA2=1