Metamath Proof Explorer


Theorem smfpimne

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfpimne.p xφ
smfpimne.x _xF
smfpimne.s φSSAlg
smfpimne.f φFSMblFnS
smfpimne.d D=domF
smfpimne.a φA*
Assertion smfpimne φxD|FxAS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimne.p xφ
2 smfpimne.x _xF
3 smfpimne.s φSSAlg
4 smfpimne.f φFSMblFnS
5 smfpimne.d D=domF
6 smfpimne.a φA*
7 3 4 5 smff φF:D
8 7 ffvelcdmda φxDFx
9 8 rexrd φxDFx*
10 6 adantr φxDA*
11 1 9 10 pimxrneun φxD|FxA=xD|Fx<AxD|A<Fx
12 3 4 5 smfdmss φDS
13 3 12 subsaluni φDS𝑡D
14 eqid S𝑡D=S𝑡D
15 3 13 14 subsalsal φS𝑡DSAlg
16 2 3 4 5 6 smfpimltxr φxD|Fx<AS𝑡D
17 2 3 4 5 6 smfpimgtxr φxD|A<FxS𝑡D
18 15 16 17 saluncld φxD|Fx<AxD|A<FxS𝑡D
19 11 18 eqeltrd φxD|FxAS𝑡D