Metamath Proof Explorer


Theorem smobeth

Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)

Ref Expression
Assertion smobeth Smo card R1

Proof

Step Hyp Ref Expression
1 cardf2 card : x | y On y x On
2 ffun card : x | y On y x On Fun card
3 1 2 ax-mp Fun card
4 r1fnon R1 Fn On
5 fnfun R1 Fn On Fun R1
6 4 5 ax-mp Fun R1
7 funco Fun card Fun R1 Fun card R1
8 3 6 7 mp2an Fun card R1
9 funfn Fun card R1 card R1 Fn dom card R1
10 8 9 mpbi card R1 Fn dom card R1
11 rnco ran card R1 = ran card ran R1
12 resss card ran R1 card
13 12 rnssi ran card ran R1 ran card
14 frn card : x | y On y x On ran card On
15 1 14 ax-mp ran card On
16 13 15 sstri ran card ran R1 On
17 11 16 eqsstri ran card R1 On
18 df-f card R1 : dom card R1 On card R1 Fn dom card R1 ran card R1 On
19 10 17 18 mpbir2an card R1 : dom card R1 On
20 dmco dom card R1 = R1 -1 dom card
21 20 feq2i card R1 : dom card R1 On card R1 : R1 -1 dom card On
22 19 21 mpbi card R1 : R1 -1 dom card On
23 elpreima R1 Fn On x R1 -1 dom card x On R1 x dom card
24 4 23 ax-mp x R1 -1 dom card x On R1 x dom card
25 24 simplbi x R1 -1 dom card x On
26 onelon x On y x y On
27 25 26 sylan x R1 -1 dom card y x y On
28 24 simprbi x R1 -1 dom card R1 x dom card
29 28 adantr x R1 -1 dom card y x R1 x dom card
30 r1ord2 x On y x R1 y R1 x
31 30 imp x On y x R1 y R1 x
32 25 31 sylan x R1 -1 dom card y x R1 y R1 x
33 ssnum R1 x dom card R1 y R1 x R1 y dom card
34 29 32 33 syl2anc x R1 -1 dom card y x R1 y dom card
35 elpreima R1 Fn On y R1 -1 dom card y On R1 y dom card
36 4 35 ax-mp y R1 -1 dom card y On R1 y dom card
37 27 34 36 sylanbrc x R1 -1 dom card y x y R1 -1 dom card
38 37 rgen2 x R1 -1 dom card y x y R1 -1 dom card
39 dftr5 Tr R1 -1 dom card x R1 -1 dom card y x y R1 -1 dom card
40 38 39 mpbir Tr R1 -1 dom card
41 cnvimass R1 -1 dom card dom R1
42 dffn2 R1 Fn On R1 : On V
43 4 42 mpbi R1 : On V
44 43 fdmi dom R1 = On
45 41 44 sseqtri R1 -1 dom card On
46 epweon E We On
47 wess R1 -1 dom card On E We On E We R1 -1 dom card
48 45 46 47 mp2 E We R1 -1 dom card
49 df-ord Ord R1 -1 dom card Tr R1 -1 dom card E We R1 -1 dom card
50 40 48 49 mpbir2an Ord R1 -1 dom card
51 r1sdom x On y x R1 y R1 x
52 25 51 sylan x R1 -1 dom card y x R1 y R1 x
53 cardsdom2 R1 y dom card R1 x dom card card R1 y card R1 x R1 y R1 x
54 34 29 53 syl2anc x R1 -1 dom card y x card R1 y card R1 x R1 y R1 x
55 52 54 mpbird x R1 -1 dom card y x card R1 y card R1 x
56 fvco2 R1 Fn On y On card R1 y = card R1 y
57 4 27 56 sylancr x R1 -1 dom card y x card R1 y = card R1 y
58 25 adantr x R1 -1 dom card y x x On
59 fvco2 R1 Fn On x On card R1 x = card R1 x
60 4 58 59 sylancr x R1 -1 dom card y x card R1 x = card R1 x
61 55 57 60 3eltr4d x R1 -1 dom card y x card R1 y card R1 x
62 61 ex x R1 -1 dom card y x card R1 y card R1 x
63 62 adantl y R1 -1 dom card x R1 -1 dom card y x card R1 y card R1 x
64 22 50 63 20 issmo Smo card R1