Metamath Proof Explorer


Theorem smobeth

Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)

Ref Expression
Assertion smobeth Smo ( card ∘ 𝑅1 )

Proof

Step Hyp Ref Expression
1 cardf2 card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦𝑥 } ⟶ On
2 ffun ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦𝑥 } ⟶ On → Fun card )
3 1 2 ax-mp Fun card
4 r1fnon 𝑅1 Fn On
5 fnfun ( 𝑅1 Fn On → Fun 𝑅1 )
6 4 5 ax-mp Fun 𝑅1
7 funco ( ( Fun card ∧ Fun 𝑅1 ) → Fun ( card ∘ 𝑅1 ) )
8 3 6 7 mp2an Fun ( card ∘ 𝑅1 )
9 funfn ( Fun ( card ∘ 𝑅1 ) ↔ ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 ) )
10 8 9 mpbi ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 )
11 rnco ran ( card ∘ 𝑅1 ) = ran ( card ↾ ran 𝑅1 )
12 resss ( card ↾ ran 𝑅1 ) ⊆ card
13 12 rnssi ran ( card ↾ ran 𝑅1 ) ⊆ ran card
14 frn ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦𝑥 } ⟶ On → ran card ⊆ On )
15 1 14 ax-mp ran card ⊆ On
16 13 15 sstri ran ( card ↾ ran 𝑅1 ) ⊆ On
17 11 16 eqsstri ran ( card ∘ 𝑅1 ) ⊆ On
18 df-f ( ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On ↔ ( ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 ) ∧ ran ( card ∘ 𝑅1 ) ⊆ On ) )
19 10 17 18 mpbir2an ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On
20 dmco dom ( card ∘ 𝑅1 ) = ( 𝑅1 “ dom card )
21 20 feq2i ( ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On ↔ ( card ∘ 𝑅1 ) : ( 𝑅1 “ dom card ) ⟶ On )
22 19 21 mpbi ( card ∘ 𝑅1 ) : ( 𝑅1 “ dom card ) ⟶ On
23 elpreima ( 𝑅1 Fn On → ( 𝑥 ∈ ( 𝑅1 “ dom card ) ↔ ( 𝑥 ∈ On ∧ ( 𝑅1𝑥 ) ∈ dom card ) ) )
24 4 23 ax-mp ( 𝑥 ∈ ( 𝑅1 “ dom card ) ↔ ( 𝑥 ∈ On ∧ ( 𝑅1𝑥 ) ∈ dom card ) )
25 24 simplbi ( 𝑥 ∈ ( 𝑅1 “ dom card ) → 𝑥 ∈ On )
26 onelon ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦 ∈ On )
27 25 26 sylan ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → 𝑦 ∈ On )
28 24 simprbi ( 𝑥 ∈ ( 𝑅1 “ dom card ) → ( 𝑅1𝑥 ) ∈ dom card )
29 28 adantr ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( 𝑅1𝑥 ) ∈ dom card )
30 r1ord2 ( 𝑥 ∈ On → ( 𝑦𝑥 → ( 𝑅1𝑦 ) ⊆ ( 𝑅1𝑥 ) ) )
31 30 imp ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ⊆ ( 𝑅1𝑥 ) )
32 25 31 sylan ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ⊆ ( 𝑅1𝑥 ) )
33 ssnum ( ( ( 𝑅1𝑥 ) ∈ dom card ∧ ( 𝑅1𝑦 ) ⊆ ( 𝑅1𝑥 ) ) → ( 𝑅1𝑦 ) ∈ dom card )
34 29 32 33 syl2anc ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ∈ dom card )
35 elpreima ( 𝑅1 Fn On → ( 𝑦 ∈ ( 𝑅1 “ dom card ) ↔ ( 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ dom card ) ) )
36 4 35 ax-mp ( 𝑦 ∈ ( 𝑅1 “ dom card ) ↔ ( 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ dom card ) )
37 27 34 36 sylanbrc ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → 𝑦 ∈ ( 𝑅1 “ dom card ) )
38 37 rgen2 𝑥 ∈ ( 𝑅1 “ dom card ) ∀ 𝑦𝑥 𝑦 ∈ ( 𝑅1 “ dom card )
39 dftr5 ( Tr ( 𝑅1 “ dom card ) ↔ ∀ 𝑥 ∈ ( 𝑅1 “ dom card ) ∀ 𝑦𝑥 𝑦 ∈ ( 𝑅1 “ dom card ) )
40 38 39 mpbir Tr ( 𝑅1 “ dom card )
41 cnvimass ( 𝑅1 “ dom card ) ⊆ dom 𝑅1
42 dffn2 ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V )
43 4 42 mpbi 𝑅1 : On ⟶ V
44 43 fdmi dom 𝑅1 = On
45 41 44 sseqtri ( 𝑅1 “ dom card ) ⊆ On
46 epweon E We On
47 wess ( ( 𝑅1 “ dom card ) ⊆ On → ( E We On → E We ( 𝑅1 “ dom card ) ) )
48 45 46 47 mp2 E We ( 𝑅1 “ dom card )
49 df-ord ( Ord ( 𝑅1 “ dom card ) ↔ ( Tr ( 𝑅1 “ dom card ) ∧ E We ( 𝑅1 “ dom card ) ) )
50 40 48 49 mpbir2an Ord ( 𝑅1 “ dom card )
51 r1sdom ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) )
52 25 51 sylan ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) )
53 cardsdom2 ( ( ( 𝑅1𝑦 ) ∈ dom card ∧ ( 𝑅1𝑥 ) ∈ dom card ) → ( ( card ‘ ( 𝑅1𝑦 ) ) ∈ ( card ‘ ( 𝑅1𝑥 ) ) ↔ ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) ) )
54 34 29 53 syl2anc ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( ( card ‘ ( 𝑅1𝑦 ) ) ∈ ( card ‘ ( 𝑅1𝑥 ) ) ↔ ( 𝑅1𝑦 ) ≺ ( 𝑅1𝑥 ) ) )
55 52 54 mpbird ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( card ‘ ( 𝑅1𝑦 ) ) ∈ ( card ‘ ( 𝑅1𝑥 ) ) )
56 fvco2 ( ( 𝑅1 Fn On ∧ 𝑦 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1𝑦 ) ) )
57 4 27 56 sylancr ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1𝑦 ) ) )
58 25 adantr ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → 𝑥 ∈ On )
59 fvco2 ( ( 𝑅1 Fn On ∧ 𝑥 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) = ( card ‘ ( 𝑅1𝑥 ) ) )
60 4 58 59 sylancr ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) = ( card ‘ ( 𝑅1𝑥 ) ) )
61 55 57 60 3eltr4d ( ( 𝑥 ∈ ( 𝑅1 “ dom card ) ∧ 𝑦𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) )
62 61 ex ( 𝑥 ∈ ( 𝑅1 “ dom card ) → ( 𝑦𝑥 → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) ) )
63 62 adantl ( ( 𝑦 ∈ ( 𝑅1 “ dom card ) ∧ 𝑥 ∈ ( 𝑅1 “ dom card ) ) → ( 𝑦𝑥 → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) ) )
64 22 50 63 20 issmo Smo ( card ∘ 𝑅1 )