Description: For sequences that correspond to valid integers, the sequence multiplication function produces the sequence for the product. This is effectively a proof of the correctness of the multiplication process, implemented in terms of logic gates for df-sad , whose correctness is verified in sadadd .
Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | smumul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitsss | |
|
2 | bitsss | |
|
3 | smucl | |
|
4 | 1 2 3 | mp2an | |
5 | 4 | sseli | |
6 | 5 | a1i | |
7 | bitsss | |
|
8 | 7 | sseli | |
9 | 8 | a1i | |
10 | simpll | |
|
11 | simplr | |
|
12 | simpr | |
|
13 | 1nn0 | |
|
14 | 13 | a1i | |
15 | 12 14 | nn0addcld | |
16 | 10 11 15 | smumullem | |
17 | 16 | ineq1d | |
18 | 2nn | |
|
19 | 18 | a1i | |
20 | 19 15 | nnexpcld | |
21 | 10 20 | zmodcld | |
22 | 21 | nn0zd | |
23 | 22 11 | zmulcld | |
24 | bitsmod | |
|
25 | 23 15 24 | syl2anc | |
26 | 17 25 | eqtr4d | |
27 | inass | |
|
28 | inidm | |
|
29 | 28 | ineq2i | |
30 | 27 29 | eqtri | |
31 | 30 | oveq1i | |
32 | 31 | ineq1i | |
33 | inss1 | |
|
34 | 1 | a1i | |
35 | 33 34 | sstrid | |
36 | 2 | a1i | |
37 | 35 36 15 | smueq | |
38 | 34 36 15 | smueq | |
39 | 32 37 38 | 3eqtr4a | |
40 | 20 | nnrpd | |
41 | 10 | zred | |
42 | modabs2 | |
|
43 | 41 40 42 | syl2anc | |
44 | eqidd | |
|
45 | 22 10 11 11 40 43 44 | modmul12d | |
46 | 45 | fveq2d | |
47 | 26 39 46 | 3eqtr3d | |
48 | 10 11 | zmulcld | |
49 | bitsmod | |
|
50 | 48 15 49 | syl2anc | |
51 | 47 50 | eqtrd | |
52 | 51 | eleq2d | |
53 | elin | |
|
54 | elin | |
|
55 | 52 53 54 | 3bitr3g | |
56 | nn0uz | |
|
57 | 12 56 | eleqtrdi | |
58 | eluzfz2b | |
|
59 | 57 58 | sylib | |
60 | 12 | nn0zd | |
61 | fzval3 | |
|
62 | 60 61 | syl | |
63 | 59 62 | eleqtrd | |
64 | 63 | biantrud | |
65 | 63 | biantrud | |
66 | 55 64 65 | 3bitr4d | |
67 | 66 | ex | |
68 | 6 9 67 | pm5.21ndd | |
69 | 68 | eqrdv | |