Description: A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | spthcycl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthistrl | |
|
2 | pthiswlk | |
|
3 | eqid | |
|
4 | 3 | wlkp | |
5 | 4 | ffund | |
6 | wlklenvp1 | |
|
7 | 6 | adantr | |
8 | wlkv | |
|
9 | 8 | simp2d | |
10 | hasheq0 | |
|
11 | 10 | biimpar | |
12 | 9 11 | sylan | |
13 | oveq1 | |
|
14 | 0p1e1 | |
|
15 | 13 14 | eqtrdi | |
16 | 12 15 | syl | |
17 | 7 16 | eqtrd | |
18 | 8 | simp3d | |
19 | hashen1 | |
|
20 | 18 19 | syl | |
21 | 20 | biimpa | |
22 | 17 21 | syldan | |
23 | funen1cnv | |
|
24 | 5 22 23 | syl2an2r | |
25 | 2 24 | sylan | |
26 | isspth | |
|
27 | 26 | biimpri | |
28 | 1 25 27 | syl2an2r | |
29 | fveq2 | |
|
30 | 29 | eqcoms | |
31 | 12 30 | syl | |
32 | 2 31 | sylan | |
33 | iscycl | |
|
34 | 33 | biimpri | |
35 | 32 34 | syldan | |
36 | 28 35 | jca | |
37 | spthispth | |
|
38 | 37 | adantr | |
39 | notnot | |
|
40 | cyclnspth | |
|
41 | 40 | com12 | |
42 | 41 | con3dimp | |
43 | nne | |
|
44 | 42 43 | sylib | |
45 | 39 44 | sylan2 | |
46 | 45 | ancoms | |
47 | 38 46 | jca | |
48 | 36 47 | impbii | |