Metamath Proof Explorer


Theorem sqlecan

Description: Cancel one factor of a square in a <_ comparison. Unlike lemul1 , the common factor A may be zero. (Contributed by NM, 17-Jan-2008)

Ref Expression
Assertion sqlecan A0AB0BA2BAAB

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0A0A0<A0=A
3 1 2 mpan A0A0<A0=A
4 recn AA
5 sqval AA2=AA
6 4 5 syl AA2=AA
7 6 breq1d AA2BAAABA
8 7 3ad2ant1 ABA0<AA2BAAABA
9 lemul1 ABA0<AABAABA
10 8 9 bitr4d ABA0<AA2BAAB
11 10 3exp ABA0<AA2BAAB
12 11 exp4a ABA0<AA2BAAB
13 12 pm2.43a AB0<AA2BAAB
14 13 adantrd AB0B0<AA2BAAB
15 14 com23 A0<AB0BA2BAAB
16 sq0 02=0
17 0le0 00
18 16 17 eqbrtri 020
19 recn BB
20 19 mul01d BB0=0
21 18 20 breqtrrid B02B0
22 21 adantl 0=AB02B0
23 oveq1 0=A02=A2
24 oveq2 0=AB0=BA
25 23 24 breq12d 0=A02B0A2BA
26 25 adantr 0=AB02B0A2BA
27 22 26 mpbid 0=ABA2BA
28 27 adantrr 0=AB0BA2BA
29 breq1 0=A0BAB
30 29 biimpa 0=A0BAB
31 30 adantrl 0=AB0BAB
32 28 31 2thd 0=AB0BA2BAAB
33 32 ex 0=AB0BA2BAAB
34 33 a1i A0=AB0BA2BAAB
35 15 34 jaod A0<A0=AB0BA2BAAB
36 3 35 sylbid A0AB0BA2BAAB
37 36 imp31 A0AB0BA2BAAB