Metamath Proof Explorer


Theorem sqrt2irrlem

Description: Lemma for sqrt2irr . This is the core of the proof: if A / B = sqrt ( 2 ) , then A and B are even, so A / 2 and B / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001) (Revised by Mario Carneiro, 12-Sep-2015) (Proof shortened by JV, 4-Jan-2022)

Ref Expression
Hypotheses sqrt2irrlem.1 φA
sqrt2irrlem.2 φB
sqrt2irrlem.3 φ2=AB
Assertion sqrt2irrlem φA2B2

Proof

Step Hyp Ref Expression
1 sqrt2irrlem.1 φA
2 sqrt2irrlem.2 φB
3 sqrt2irrlem.3 φ2=AB
4 2cnd φ2
5 4 sqsqrtd φ22=2
6 3 oveq1d φ22=AB2
7 5 6 eqtr3d φ2=AB2
8 1 zcnd φA
9 2 nncnd φB
10 2 nnne0d φB0
11 8 9 10 sqdivd φAB2=A2B2
12 7 11 eqtrd φ2=A2B2
13 12 oveq1d φ2B2=A2B2B2
14 8 sqcld φA2
15 2 nnsqcld φB2
16 15 nncnd φB2
17 15 nnne0d φB20
18 14 16 17 divcan1d φA2B2B2=A2
19 13 18 eqtrd φ2B2=A2
20 19 oveq1d φ2B22=A22
21 2ne0 20
22 21 a1i φ20
23 16 4 22 divcan3d φ2B22=B2
24 20 23 eqtr3d φA22=B2
25 24 15 eqeltrd φA22
26 25 nnzd φA22
27 zesq AA2A22
28 1 27 syl φA2A22
29 26 28 mpbird φA2
30 4 sqvald φ22=22
31 30 oveq2d φA222=A222
32 8 4 22 sqdivd φA22=A222
33 14 4 4 22 22 divdiv1d φA222=A222
34 31 32 33 3eqtr4d φA22=A222
35 24 oveq1d φA222=B22
36 34 35 eqtrd φA22=B22
37 zsqcl A2A22
38 29 37 syl φA22
39 36 38 eqeltrrd φB22
40 15 nnrpd φB2+
41 40 rphalfcld φB22+
42 41 rpgt0d φ0<B22
43 elnnz B22B220<B22
44 39 42 43 sylanbrc φB22
45 nnesq BB2B22
46 2 45 syl φB2B22
47 44 46 mpbird φB2
48 29 47 jca φA2B2