Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srgmulgass.b | |
|
srgmulgass.m | |
||
srgmulgass.t | |
||
Assertion | srgmulgass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmulgass.b | |
|
2 | srgmulgass.m | |
|
3 | srgmulgass.t | |
|
4 | oveq1 | |
|
5 | 4 | oveq1d | |
6 | oveq1 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | imbi2d | |
9 | oveq1 | |
|
10 | 9 | oveq1d | |
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | 12 | imbi2d | |
14 | oveq1 | |
|
15 | 14 | oveq1d | |
16 | oveq1 | |
|
17 | 15 16 | eqeq12d | |
18 | 17 | imbi2d | |
19 | oveq1 | |
|
20 | 19 | oveq1d | |
21 | oveq1 | |
|
22 | 20 21 | eqeq12d | |
23 | 22 | imbi2d | |
24 | simpr | |
|
25 | simpr | |
|
26 | 25 | adantr | |
27 | eqid | |
|
28 | 1 3 27 | srglz | |
29 | 24 26 28 | syl2anc | |
30 | simpl | |
|
31 | 30 | adantr | |
32 | 1 27 2 | mulg0 | |
33 | 31 32 | syl | |
34 | 33 | oveq1d | |
35 | 1 3 | srgcl | |
36 | 24 31 26 35 | syl3anc | |
37 | 1 27 2 | mulg0 | |
38 | 36 37 | syl | |
39 | 29 34 38 | 3eqtr4d | |
40 | srgmnd | |
|
41 | 40 | adantl | |
42 | 41 | adantl | |
43 | simpl | |
|
44 | 31 | adantl | |
45 | eqid | |
|
46 | 1 2 45 | mulgnn0p1 | |
47 | 42 43 44 46 | syl3anc | |
48 | 47 | oveq1d | |
49 | 24 | adantl | |
50 | 1 2 42 43 44 | mulgnn0cld | |
51 | 26 | adantl | |
52 | 1 45 3 | srgdir | |
53 | 49 50 44 51 52 | syl13anc | |
54 | 48 53 | eqtrd | |
55 | 54 | adantr | |
56 | oveq1 | |
|
57 | 35 | 3expb | |
58 | 57 | ancoms | |
59 | 58 | adantl | |
60 | 1 2 45 | mulgnn0p1 | |
61 | 42 43 59 60 | syl3anc | |
62 | 61 | eqcomd | |
63 | 56 62 | sylan9eqr | |
64 | 55 63 | eqtrd | |
65 | 64 | exp31 | |
66 | 65 | a2d | |
67 | 8 13 18 23 39 66 | nn0ind | |
68 | 67 | expd | |
69 | 68 | 3impib | |
70 | 69 | impcom | |