Metamath Proof Explorer


Theorem srgmulgass

Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgmulgass.b B=BaseR
srgmulgass.m ·˙=R
srgmulgass.t ×˙=R
Assertion srgmulgass RSRingN0XBYBN·˙X×˙Y=N·˙X×˙Y

Proof

Step Hyp Ref Expression
1 srgmulgass.b B=BaseR
2 srgmulgass.m ·˙=R
3 srgmulgass.t ×˙=R
4 oveq1 x=0x·˙X=0·˙X
5 4 oveq1d x=0x·˙X×˙Y=0·˙X×˙Y
6 oveq1 x=0x·˙X×˙Y=0·˙X×˙Y
7 5 6 eqeq12d x=0x·˙X×˙Y=x·˙X×˙Y0·˙X×˙Y=0·˙X×˙Y
8 7 imbi2d x=0XBYBRSRingx·˙X×˙Y=x·˙X×˙YXBYBRSRing0·˙X×˙Y=0·˙X×˙Y
9 oveq1 x=yx·˙X=y·˙X
10 9 oveq1d x=yx·˙X×˙Y=y·˙X×˙Y
11 oveq1 x=yx·˙X×˙Y=y·˙X×˙Y
12 10 11 eqeq12d x=yx·˙X×˙Y=x·˙X×˙Yy·˙X×˙Y=y·˙X×˙Y
13 12 imbi2d x=yXBYBRSRingx·˙X×˙Y=x·˙X×˙YXBYBRSRingy·˙X×˙Y=y·˙X×˙Y
14 oveq1 x=y+1x·˙X=y+1·˙X
15 14 oveq1d x=y+1x·˙X×˙Y=y+1·˙X×˙Y
16 oveq1 x=y+1x·˙X×˙Y=y+1·˙X×˙Y
17 15 16 eqeq12d x=y+1x·˙X×˙Y=x·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
18 17 imbi2d x=y+1XBYBRSRingx·˙X×˙Y=x·˙X×˙YXBYBRSRingy+1·˙X×˙Y=y+1·˙X×˙Y
19 oveq1 x=Nx·˙X=N·˙X
20 19 oveq1d x=Nx·˙X×˙Y=N·˙X×˙Y
21 oveq1 x=Nx·˙X×˙Y=N·˙X×˙Y
22 20 21 eqeq12d x=Nx·˙X×˙Y=x·˙X×˙YN·˙X×˙Y=N·˙X×˙Y
23 22 imbi2d x=NXBYBRSRingx·˙X×˙Y=x·˙X×˙YXBYBRSRingN·˙X×˙Y=N·˙X×˙Y
24 simpr XBYBRSRingRSRing
25 simpr XBYBYB
26 25 adantr XBYBRSRingYB
27 eqid 0R=0R
28 1 3 27 srglz RSRingYB0R×˙Y=0R
29 24 26 28 syl2anc XBYBRSRing0R×˙Y=0R
30 simpl XBYBXB
31 30 adantr XBYBRSRingXB
32 1 27 2 mulg0 XB0·˙X=0R
33 31 32 syl XBYBRSRing0·˙X=0R
34 33 oveq1d XBYBRSRing0·˙X×˙Y=0R×˙Y
35 1 3 srgcl RSRingXBYBX×˙YB
36 24 31 26 35 syl3anc XBYBRSRingX×˙YB
37 1 27 2 mulg0 X×˙YB0·˙X×˙Y=0R
38 36 37 syl XBYBRSRing0·˙X×˙Y=0R
39 29 34 38 3eqtr4d XBYBRSRing0·˙X×˙Y=0·˙X×˙Y
40 srgmnd RSRingRMnd
41 40 adantl XBYBRSRingRMnd
42 41 adantl y0XBYBRSRingRMnd
43 simpl y0XBYBRSRingy0
44 31 adantl y0XBYBRSRingXB
45 eqid +R=+R
46 1 2 45 mulgnn0p1 RMndy0XBy+1·˙X=y·˙X+RX
47 42 43 44 46 syl3anc y0XBYBRSRingy+1·˙X=y·˙X+RX
48 47 oveq1d y0XBYBRSRingy+1·˙X×˙Y=y·˙X+RX×˙Y
49 24 adantl y0XBYBRSRingRSRing
50 1 2 42 43 44 mulgnn0cld y0XBYBRSRingy·˙XB
51 26 adantl y0XBYBRSRingYB
52 1 45 3 srgdir RSRingy·˙XBXBYBy·˙X+RX×˙Y=y·˙X×˙Y+RX×˙Y
53 49 50 44 51 52 syl13anc y0XBYBRSRingy·˙X+RX×˙Y=y·˙X×˙Y+RX×˙Y
54 48 53 eqtrd y0XBYBRSRingy+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
55 54 adantr y0XBYBRSRingy·˙X×˙Y=y·˙X×˙Yy+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
56 oveq1 y·˙X×˙Y=y·˙X×˙Yy·˙X×˙Y+RX×˙Y=y·˙X×˙Y+RX×˙Y
57 35 3expb RSRingXBYBX×˙YB
58 57 ancoms XBYBRSRingX×˙YB
59 58 adantl y0XBYBRSRingX×˙YB
60 1 2 45 mulgnn0p1 RMndy0X×˙YBy+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
61 42 43 59 60 syl3anc y0XBYBRSRingy+1·˙X×˙Y=y·˙X×˙Y+RX×˙Y
62 61 eqcomd y0XBYBRSRingy·˙X×˙Y+RX×˙Y=y+1·˙X×˙Y
63 56 62 sylan9eqr y0XBYBRSRingy·˙X×˙Y=y·˙X×˙Yy·˙X×˙Y+RX×˙Y=y+1·˙X×˙Y
64 55 63 eqtrd y0XBYBRSRingy·˙X×˙Y=y·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
65 64 exp31 y0XBYBRSRingy·˙X×˙Y=y·˙X×˙Yy+1·˙X×˙Y=y+1·˙X×˙Y
66 65 a2d y0XBYBRSRingy·˙X×˙Y=y·˙X×˙YXBYBRSRingy+1·˙X×˙Y=y+1·˙X×˙Y
67 8 13 18 23 39 66 nn0ind N0XBYBRSRingN·˙X×˙Y=N·˙X×˙Y
68 67 expd N0XBYBRSRingN·˙X×˙Y=N·˙X×˙Y
69 68 3impib N0XBYBRSRingN·˙X×˙Y=N·˙X×˙Y
70 69 impcom RSRingN0XBYBN·˙X×˙Y=N·˙X×˙Y