| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgmulgass.b |
|
| 2 |
|
srgmulgass.m |
|
| 3 |
|
srgmulgass.t |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
oveq1d |
|
| 6 |
|
oveq1 |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
oveq1 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
oveq1 |
|
| 22 |
20 21
|
eqeq12d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
simpr |
|
| 25 |
|
simpr |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
1 3 27
|
srglz |
|
| 29 |
24 26 28
|
syl2anc |
|
| 30 |
|
simpl |
|
| 31 |
30
|
adantr |
|
| 32 |
1 27 2
|
mulg0 |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
oveq1d |
|
| 35 |
1 3
|
srgcl |
|
| 36 |
24 31 26 35
|
syl3anc |
|
| 37 |
1 27 2
|
mulg0 |
|
| 38 |
36 37
|
syl |
|
| 39 |
29 34 38
|
3eqtr4d |
|
| 40 |
|
srgmnd |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
adantl |
|
| 43 |
|
simpl |
|
| 44 |
31
|
adantl |
|
| 45 |
|
eqid |
|
| 46 |
1 2 45
|
mulgnn0p1 |
|
| 47 |
42 43 44 46
|
syl3anc |
|
| 48 |
47
|
oveq1d |
|
| 49 |
24
|
adantl |
|
| 50 |
1 2 42 43 44
|
mulgnn0cld |
|
| 51 |
26
|
adantl |
|
| 52 |
1 45 3
|
srgdir |
|
| 53 |
49 50 44 51 52
|
syl13anc |
|
| 54 |
48 53
|
eqtrd |
|
| 55 |
54
|
adantr |
|
| 56 |
|
oveq1 |
|
| 57 |
35
|
3expb |
|
| 58 |
57
|
ancoms |
|
| 59 |
58
|
adantl |
|
| 60 |
1 2 45
|
mulgnn0p1 |
|
| 61 |
42 43 59 60
|
syl3anc |
|
| 62 |
61
|
eqcomd |
|
| 63 |
56 62
|
sylan9eqr |
|
| 64 |
55 63
|
eqtrd |
|
| 65 |
64
|
exp31 |
|
| 66 |
65
|
a2d |
|
| 67 |
8 13 18 23 39 66
|
nn0ind |
|
| 68 |
67
|
expd |
|
| 69 |
68
|
3impib |
|
| 70 |
69
|
impcom |
|