Metamath Proof Explorer


Theorem ssfzoulel

Description: If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018)

Ref Expression
Assertion ssfzoulel N0ABNAB0A..^B0..^NBA

Proof

Step Hyp Ref Expression
1 simpl2 N0AB¬BAA
2 simpl3 N0AB¬BAB
3 zre AA
4 zre BB
5 ltnle ABA<B¬BA
6 3 4 5 syl2an ABA<B¬BA
7 6 3adant1 N0ABA<B¬BA
8 7 biimpar N0AB¬BAA<B
9 ssfzo12 ABA<BA..^B0..^N0ABN
10 1 2 8 9 syl3anc N0AB¬BAA..^B0..^N0ABN
11 4 adantl ABB
12 0red AB0
13 3 adantr ABA
14 letr B0AB00ABA
15 11 12 13 14 syl3anc ABB00ABA
16 15 expcomd AB0AB0BA
17 16 imp AB0AB0BA
18 17 con3d AB0A¬BA¬B0
19 18 ex AB0A¬BA¬B0
20 19 3adant1 N0AB0A¬BA¬B0
21 20 com23 N0AB¬BA0A¬B0
22 21 imp N0AB¬BA0A¬B0
23 nn0re N0N
24 4 23 3 3anim123i BN0ABNA
25 24 3coml N0ABBNA
26 letr BNABNNABA
27 25 26 syl N0ABBNNABA
28 27 expdimp N0ABBNNABA
29 28 con3d N0ABBN¬BA¬NA
30 29 impancom N0AB¬BABN¬NA
31 22 30 anim12d N0AB¬BA0ABN¬B0¬NA
32 ioran ¬NAB0¬NA¬B0
33 32 biancomi ¬NAB0¬B0¬NA
34 31 33 imbitrrdi N0AB¬BA0ABN¬NAB0
35 10 34 syld N0AB¬BAA..^B0..^N¬NAB0
36 35 con2d N0AB¬BANAB0¬A..^B0..^N
37 36 impancom N0ABNAB0¬BA¬A..^B0..^N
38 37 con4d N0ABNAB0A..^B0..^NBA
39 38 ex N0ABNAB0A..^B0..^NBA