Metamath Proof Explorer


Theorem stcltrlem1

Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 φSStatesxCyCSx=1Sy=1xy
stcltr1.2 AC
stcltrlem1.3 BC
Assertion stcltrlem1 φSB=1SAAB=1

Proof

Step Hyp Ref Expression
1 stcltr1.1 φSStatesxCyCSx=1Sy=1xy
2 stcltr1.2 AC
3 stcltrlem1.3 BC
4 1 simplbi φSStates
5 2 3 stji1i SStatesSAAB=SA+SAB
6 4 5 syl φSAAB=SA+SAB
7 6 adantr φSB=1SAAB=SA+SAB
8 1 3 stcltr2i φSB=1B=
9 8 imp φSB=1B=
10 ineq2 B=AB=A
11 2 chm1i A=A
12 10 11 eqtrdi B=AB=A
13 9 12 syl φSB=1AB=A
14 13 fveq2d φSB=1SAB=SA
15 14 oveq2d φSB=1SA+SAB=SA+SA
16 4 adantr φSB=1SStates
17 2 choccli AC
18 stcl SStatesACSA
19 17 18 mpi SStatesSA
20 19 recnd SStatesSA
21 stcl SStatesACSA
22 2 21 mpi SStatesSA
23 22 recnd SStatesSA
24 20 23 addcomd SStatesSA+SA=SA+SA
25 2 sto1i SStatesSA+SA=1
26 24 25 eqtrd SStatesSA+SA=1
27 16 26 syl φSB=1SA+SA=1
28 15 27 eqtrd φSB=1SA+SAB=1
29 7 28 eqtrd φSB=1SAAB=1
30 29 ex φSB=1SAAB=1