Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stcltr1.1 | |
|
stcltr1.2 | |
||
stcltrlem1.3 | |
||
Assertion | stcltrlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stcltr1.1 | |
|
2 | stcltr1.2 | |
|
3 | stcltrlem1.3 | |
|
4 | 1 | simplbi | |
5 | 2 3 | stji1i | |
6 | 4 5 | syl | |
7 | 6 | adantr | |
8 | 1 3 | stcltr2i | |
9 | 8 | imp | |
10 | ineq2 | |
|
11 | 2 | chm1i | |
12 | 10 11 | eqtrdi | |
13 | 9 12 | syl | |
14 | 13 | fveq2d | |
15 | 14 | oveq2d | |
16 | 4 | adantr | |
17 | 2 | choccli | |
18 | stcl | |
|
19 | 17 18 | mpi | |
20 | 19 | recnd | |
21 | stcl | |
|
22 | 2 21 | mpi | |
23 | 22 | recnd | |
24 | 20 23 | addcomd | |
25 | 2 | sto1i | |
26 | 24 25 | eqtrd | |
27 | 16 26 | syl | |
28 | 15 27 | eqtrd | |
29 | 7 28 | eqtrd | |
30 | 29 | ex | |