Metamath Proof Explorer


Theorem stoweidlem47

Description: Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem47.1 _ t F
stoweidlem47.2 _ t S
stoweidlem47.3 t φ
stoweidlem47.4 T = J
stoweidlem47.5 G = T × S
stoweidlem47.6 K = topGen ran .
stoweidlem47.7 φ J Top
stoweidlem47.8 C = J Cn K
stoweidlem47.9 φ F C
stoweidlem47.10 φ S
Assertion stoweidlem47 φ t T F t S C

Proof

Step Hyp Ref Expression
1 stoweidlem47.1 _ t F
2 stoweidlem47.2 _ t S
3 stoweidlem47.3 t φ
4 stoweidlem47.4 T = J
5 stoweidlem47.5 G = T × S
6 stoweidlem47.6 K = topGen ran .
7 stoweidlem47.7 φ J Top
8 stoweidlem47.8 C = J Cn K
9 stoweidlem47.9 φ F C
10 stoweidlem47.10 φ S
11 5 fveq1i G t = T × S t
12 10 renegcld φ S
13 fvconst2g S t T T × S t = S
14 12 13 sylan φ t T T × S t = S
15 11 14 eqtrid φ t T G t = S
16 15 oveq2d φ t T F t + G t = F t + S
17 6 4 8 9 fcnre φ F : T
18 17 ffvelrnda φ t T F t
19 18 recnd φ t T F t
20 10 recnd φ S
21 20 adantr φ t T S
22 19 21 negsubd φ t T F t + S = F t S
23 16 22 eqtrd φ t T F t + G t = F t S
24 3 23 mpteq2da φ t T F t + G t = t T F t S
25 nfcv _ t T
26 2 nfneg _ t S
27 26 nfsn _ t S
28 25 27 nfxp _ t T × S
29 5 28 nfcxfr _ t G
30 4 a1i φ T = J
31 istopon J TopOn T J Top T = J
32 7 30 31 sylanbrc φ J TopOn T
33 9 8 eleqtrdi φ F J Cn K
34 retopon topGen ran . TopOn
35 6 34 eqeltri K TopOn
36 35 a1i φ K TopOn
37 cnconst2 J TopOn T K TopOn S T × S J Cn K
38 32 36 12 37 syl3anc φ T × S J Cn K
39 5 38 eqeltrid φ G J Cn K
40 1 29 3 6 32 33 39 refsum2cn φ t T F t + G t J Cn K
41 40 8 eleqtrrdi φ t T F t + G t C
42 24 41 eqeltrrd φ t T F t S C