Metamath Proof Explorer


Theorem subcn2

Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion subcn2 A+BCy+z+uvuB<yvC<zu-v-BC<A

Proof

Step Hyp Ref Expression
1 negcl CC
2 addcn2 A+BCy+z+uwuB<ywC<zu+w-B+C<A
3 1 2 syl3an3 A+BCy+z+uwuB<ywC<zu+w-B+C<A
4 negcl vv
5 fvoveq1 w=vwC=-v-C
6 5 breq1d w=vwC<z-v-C<z
7 6 anbi2d w=vuB<ywC<zuB<y-v-C<z
8 oveq2 w=vu+w=u+v
9 8 fvoveq1d w=vu+w-B+C=u+v-B+C
10 9 breq1d w=vu+w-B+C<Au+v-B+C<A
11 7 10 imbi12d w=vuB<ywC<zu+w-B+C<AuB<y-v-C<zu+v-B+C<A
12 11 rspcv vwuB<ywC<zu+w-B+C<AuB<y-v-C<zu+v-B+C<A
13 4 12 syl vwuB<ywC<zu+w-B+C<AuB<y-v-C<zu+v-B+C<A
14 13 adantl A+BCuvwuB<ywC<zu+w-B+C<AuB<y-v-C<zu+v-B+C<A
15 simpr A+BCuvv
16 simpll3 A+BCuvC
17 15 16 neg2subd A+BCuv-v-C=Cv
18 17 fveq2d A+BCuv-v-C=Cv
19 16 15 abssubd A+BCuvCv=vC
20 18 19 eqtrd A+BCuv-v-C=vC
21 20 breq1d A+BCuv-v-C<zvC<z
22 21 anbi2d A+BCuvuB<y-v-C<zuB<yvC<z
23 negsub uvu+v=uv
24 23 adantll A+BCuvu+v=uv
25 simpll2 A+BCuvB
26 25 16 negsubd A+BCuvB+C=BC
27 24 26 oveq12d A+BCuvu+v-B+C=u-v-BC
28 27 fveq2d A+BCuvu+v-B+C=u-v-BC
29 28 breq1d A+BCuvu+v-B+C<Au-v-BC<A
30 22 29 imbi12d A+BCuvuB<y-v-C<zu+v-B+C<AuB<yvC<zu-v-BC<A
31 14 30 sylibd A+BCuvwuB<ywC<zu+w-B+C<AuB<yvC<zu-v-BC<A
32 31 ralrimdva A+BCuwuB<ywC<zu+w-B+C<AvuB<yvC<zu-v-BC<A
33 32 ralimdva A+BCuwuB<ywC<zu+w-B+C<AuvuB<yvC<zu-v-BC<A
34 33 reximdv A+BCz+uwuB<ywC<zu+w-B+C<Az+uvuB<yvC<zu-v-BC<A
35 34 reximdv A+BCy+z+uwuB<ywC<zu+w-B+C<Ay+z+uvuB<yvC<zu-v-BC<A
36 3 35 mpd A+BCy+z+uvuB<yvC<zu-v-BC<A