Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | subcn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl | |
|
2 | addcn2 | |
|
3 | 1 2 | syl3an3 | |
4 | negcl | |
|
5 | fvoveq1 | |
|
6 | 5 | breq1d | |
7 | 6 | anbi2d | |
8 | oveq2 | |
|
9 | 8 | fvoveq1d | |
10 | 9 | breq1d | |
11 | 7 10 | imbi12d | |
12 | 11 | rspcv | |
13 | 4 12 | syl | |
14 | 13 | adantl | |
15 | simpr | |
|
16 | simpll3 | |
|
17 | 15 16 | neg2subd | |
18 | 17 | fveq2d | |
19 | 16 15 | abssubd | |
20 | 18 19 | eqtrd | |
21 | 20 | breq1d | |
22 | 21 | anbi2d | |
23 | negsub | |
|
24 | 23 | adantll | |
25 | simpll2 | |
|
26 | 25 16 | negsubd | |
27 | 24 26 | oveq12d | |
28 | 27 | fveq2d | |
29 | 28 | breq1d | |
30 | 22 29 | imbi12d | |
31 | 14 30 | sylibd | |
32 | 31 | ralrimdva | |
33 | 32 | ralimdva | |
34 | 33 | reximdv | |
35 | 34 | reximdv | |
36 | 3 35 | mpd | |