Metamath Proof Explorer


Theorem subfacp1lem2a

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
subfacp1lem2.5 F=G1MM1
subfacp1lem2.6 φG:K1-1 ontoK
Assertion subfacp1lem2a φF:1N+11-1 onto1N+1F1=MFM=1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 subfacp1lem2.5 F=G1MM1
9 subfacp1lem2.6 φG:K1-1 ontoK
10 1z 1
11 f1oprswap 1MV1MM1:1M1-1 onto1M
12 10 6 11 mp2an 1MM1:1M1-1 onto1M
13 12 a1i φ1MM1:1M1-1 onto1M
14 1 2 3 4 5 6 7 subfacp1lem1 φK1M=K1M=1N+1K=N1
15 14 simp1d φK1M=
16 f1oun G:K1-1 ontoK1MM1:1M1-1 onto1MK1M=K1M=G1MM1:K1M1-1 ontoK1M
17 9 13 15 15 16 syl22anc φG1MM1:K1M1-1 ontoK1M
18 14 simp2d φK1M=1N+1
19 f1oeq1 F=G1MM1F:K1M1-1 ontoK1MG1MM1:K1M1-1 ontoK1M
20 8 19 ax-mp F:K1M1-1 ontoK1MG1MM1:K1M1-1 ontoK1M
21 f1oeq2 K1M=1N+1F:K1M1-1 ontoK1MF:1N+11-1 ontoK1M
22 20 21 bitr3id K1M=1N+1G1MM1:K1M1-1 ontoK1MF:1N+11-1 ontoK1M
23 f1oeq3 K1M=1N+1F:1N+11-1 ontoK1MF:1N+11-1 onto1N+1
24 22 23 bitrd K1M=1N+1G1MM1:K1M1-1 ontoK1MF:1N+11-1 onto1N+1
25 18 24 syl φG1MM1:K1M1-1 ontoK1MF:1N+11-1 onto1N+1
26 17 25 mpbid φF:1N+11-1 onto1N+1
27 f1ofun F:1N+11-1 onto1N+1FunF
28 26 27 syl φFunF
29 snsspr1 1M1MM1
30 ssun2 1MM1G1MM1
31 30 8 sseqtrri 1MM1F
32 29 31 sstri 1MF
33 1ex 1V
34 33 snid 11
35 6 dmsnop dom1M=1
36 34 35 eleqtrri 1dom1M
37 funssfv FunF1MF1dom1MF1=1M1
38 32 36 37 mp3an23 FunFF1=1M1
39 28 38 syl φF1=1M1
40 33 6 fvsn 1M1=M
41 39 40 eqtrdi φF1=M
42 snsspr2 M11MM1
43 42 31 sstri M1F
44 6 snid MM
45 33 dmsnop domM1=M
46 44 45 eleqtrri MdomM1
47 funssfv FunFM1FMdomM1FM=M1M
48 43 46 47 mp3an23 FunFFM=M1M
49 28 48 syl φFM=M1M
50 6 33 fvsn M1M=1
51 49 50 eqtrdi φFM=1
52 26 41 51 3jca φF:1N+11-1 onto1N+1F1=MFM=1