Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | |
|
subfac.n | |
||
subfacp1lem.a | |
||
subfacp1lem1.n | |
||
subfacp1lem1.m | |
||
subfacp1lem1.x | |
||
subfacp1lem1.k | |
||
subfacp1lem2.5 | |
||
subfacp1lem2.6 | |
||
Assertion | subfacp1lem2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | |
|
2 | subfac.n | |
|
3 | subfacp1lem.a | |
|
4 | subfacp1lem1.n | |
|
5 | subfacp1lem1.m | |
|
6 | subfacp1lem1.x | |
|
7 | subfacp1lem1.k | |
|
8 | subfacp1lem2.5 | |
|
9 | subfacp1lem2.6 | |
|
10 | 1z | |
|
11 | f1oprswap | |
|
12 | 10 6 11 | mp2an | |
13 | 12 | a1i | |
14 | 1 2 3 4 5 6 7 | subfacp1lem1 | |
15 | 14 | simp1d | |
16 | f1oun | |
|
17 | 9 13 15 15 16 | syl22anc | |
18 | 14 | simp2d | |
19 | f1oeq1 | |
|
20 | 8 19 | ax-mp | |
21 | f1oeq2 | |
|
22 | 20 21 | bitr3id | |
23 | f1oeq3 | |
|
24 | 22 23 | bitrd | |
25 | 18 24 | syl | |
26 | 17 25 | mpbid | |
27 | f1ofun | |
|
28 | 26 27 | syl | |
29 | snsspr1 | |
|
30 | ssun2 | |
|
31 | 30 8 | sseqtrri | |
32 | 29 31 | sstri | |
33 | 1ex | |
|
34 | 33 | snid | |
35 | 6 | dmsnop | |
36 | 34 35 | eleqtrri | |
37 | funssfv | |
|
38 | 32 36 37 | mp3an23 | |
39 | 28 38 | syl | |
40 | 33 6 | fvsn | |
41 | 39 40 | eqtrdi | |
42 | snsspr2 | |
|
43 | 42 31 | sstri | |
44 | 6 | snid | |
45 | 33 | dmsnop | |
46 | 44 45 | eleqtrri | |
47 | funssfv | |
|
48 | 43 46 47 | mp3an23 | |
49 | 28 48 | syl | |
50 | 6 33 | fvsn | |
51 | 49 50 | eqtrdi | |
52 | 26 41 51 | 3jca | |