Metamath Proof Explorer


Theorem subgdprd

Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses subgdprd.1 H=G𝑠A
subgdprd.2 φASubGrpG
subgdprd.3 φGdomDProdS
subgdprd.4 φranS𝒫A
Assertion subgdprd φHDProdS=GDProdS

Proof

Step Hyp Ref Expression
1 subgdprd.1 H=G𝑠A
2 subgdprd.2 φASubGrpG
3 subgdprd.3 φGdomDProdS
4 subgdprd.4 φranS𝒫A
5 1 subggrp ASubGrpGHGrp
6 2 5 syl φHGrp
7 eqid BaseH=BaseH
8 7 subgacs HGrpSubGrpHACSBaseH
9 acsmre SubGrpHACSBaseHSubGrpHMooreBaseH
10 6 8 9 3syl φSubGrpHMooreBaseH
11 subgrcl ASubGrpGGGrp
12 2 11 syl φGGrp
13 eqid BaseG=BaseG
14 13 subgacs GGrpSubGrpGACSBaseG
15 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
16 12 14 15 3syl φSubGrpGMooreBaseG
17 eqid mrClsSubGrpG=mrClsSubGrpG
18 dprdf GdomDProdSS:domSSubGrpG
19 frn S:domSSubGrpGranSSubGrpG
20 3 18 19 3syl φranSSubGrpG
21 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
22 16 21 syl φSubGrpG𝒫BaseG
23 20 22 sstrd φranS𝒫BaseG
24 sspwuni ranS𝒫BaseGranSBaseG
25 23 24 sylib φranSBaseG
26 16 17 25 mrcssidd φranSmrClsSubGrpGranS
27 17 mrccl SubGrpGMooreBaseGranSBaseGmrClsSubGrpGranSSubGrpG
28 16 25 27 syl2anc φmrClsSubGrpGranSSubGrpG
29 sspwuni ranS𝒫AranSA
30 4 29 sylib φranSA
31 17 mrcsscl SubGrpGMooreBaseGranSAASubGrpGmrClsSubGrpGranSA
32 16 30 2 31 syl3anc φmrClsSubGrpGranSA
33 1 subsubg ASubGrpGmrClsSubGrpGranSSubGrpHmrClsSubGrpGranSSubGrpGmrClsSubGrpGranSA
34 2 33 syl φmrClsSubGrpGranSSubGrpHmrClsSubGrpGranSSubGrpGmrClsSubGrpGranSA
35 28 32 34 mpbir2and φmrClsSubGrpGranSSubGrpH
36 eqid mrClsSubGrpH=mrClsSubGrpH
37 36 mrcsscl SubGrpHMooreBaseHranSmrClsSubGrpGranSmrClsSubGrpGranSSubGrpHmrClsSubGrpHranSmrClsSubGrpGranS
38 10 26 35 37 syl3anc φmrClsSubGrpHranSmrClsSubGrpGranS
39 1 subgdmdprd ASubGrpGHdomDProdSGdomDProdSranS𝒫A
40 2 39 syl φHdomDProdSGdomDProdSranS𝒫A
41 3 4 40 mpbir2and φHdomDProdS
42 eqidd φdomS=domS
43 41 42 dprdf2 φS:domSSubGrpH
44 43 frnd φranSSubGrpH
45 mresspw SubGrpHMooreBaseHSubGrpH𝒫BaseH
46 10 45 syl φSubGrpH𝒫BaseH
47 44 46 sstrd φranS𝒫BaseH
48 sspwuni ranS𝒫BaseHranSBaseH
49 47 48 sylib φranSBaseH
50 10 36 49 mrcssidd φranSmrClsSubGrpHranS
51 36 mrccl SubGrpHMooreBaseHranSBaseHmrClsSubGrpHranSSubGrpH
52 10 49 51 syl2anc φmrClsSubGrpHranSSubGrpH
53 1 subsubg ASubGrpGmrClsSubGrpHranSSubGrpHmrClsSubGrpHranSSubGrpGmrClsSubGrpHranSA
54 2 53 syl φmrClsSubGrpHranSSubGrpHmrClsSubGrpHranSSubGrpGmrClsSubGrpHranSA
55 52 54 mpbid φmrClsSubGrpHranSSubGrpGmrClsSubGrpHranSA
56 55 simpld φmrClsSubGrpHranSSubGrpG
57 17 mrcsscl SubGrpGMooreBaseGranSmrClsSubGrpHranSmrClsSubGrpHranSSubGrpGmrClsSubGrpGranSmrClsSubGrpHranS
58 16 50 56 57 syl3anc φmrClsSubGrpGranSmrClsSubGrpHranS
59 38 58 eqssd φmrClsSubGrpHranS=mrClsSubGrpGranS
60 36 dprdspan HdomDProdSHDProdS=mrClsSubGrpHranS
61 41 60 syl φHDProdS=mrClsSubGrpHranS
62 17 dprdspan GdomDProdSGDProdS=mrClsSubGrpGranS
63 3 62 syl φGDProdS=mrClsSubGrpGranS
64 59 61 63 3eqtr4d φHDProdS=GDProdS