Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgdprd.1 | |
|
subgdprd.2 | |
||
subgdprd.3 | |
||
subgdprd.4 | |
||
Assertion | subgdprd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdprd.1 | |
|
2 | subgdprd.2 | |
|
3 | subgdprd.3 | |
|
4 | subgdprd.4 | |
|
5 | 1 | subggrp | |
6 | 2 5 | syl | |
7 | eqid | |
|
8 | 7 | subgacs | |
9 | acsmre | |
|
10 | 6 8 9 | 3syl | |
11 | subgrcl | |
|
12 | 2 11 | syl | |
13 | eqid | |
|
14 | 13 | subgacs | |
15 | acsmre | |
|
16 | 12 14 15 | 3syl | |
17 | eqid | |
|
18 | dprdf | |
|
19 | frn | |
|
20 | 3 18 19 | 3syl | |
21 | mresspw | |
|
22 | 16 21 | syl | |
23 | 20 22 | sstrd | |
24 | sspwuni | |
|
25 | 23 24 | sylib | |
26 | 16 17 25 | mrcssidd | |
27 | 17 | mrccl | |
28 | 16 25 27 | syl2anc | |
29 | sspwuni | |
|
30 | 4 29 | sylib | |
31 | 17 | mrcsscl | |
32 | 16 30 2 31 | syl3anc | |
33 | 1 | subsubg | |
34 | 2 33 | syl | |
35 | 28 32 34 | mpbir2and | |
36 | eqid | |
|
37 | 36 | mrcsscl | |
38 | 10 26 35 37 | syl3anc | |
39 | 1 | subgdmdprd | |
40 | 2 39 | syl | |
41 | 3 4 40 | mpbir2and | |
42 | eqidd | |
|
43 | 41 42 | dprdf2 | |
44 | 43 | frnd | |
45 | mresspw | |
|
46 | 10 45 | syl | |
47 | 44 46 | sstrd | |
48 | sspwuni | |
|
49 | 47 48 | sylib | |
50 | 10 36 49 | mrcssidd | |
51 | 36 | mrccl | |
52 | 10 49 51 | syl2anc | |
53 | 1 | subsubg | |
54 | 2 53 | syl | |
55 | 52 54 | mpbid | |
56 | 55 | simpld | |
57 | 17 | mrcsscl | |
58 | 16 50 56 57 | syl3anc | |
59 | 38 58 | eqssd | |
60 | 36 | dprdspan | |
61 | 41 60 | syl | |
62 | 17 | dprdspan | |
63 | 3 62 | syl | |
64 | 59 61 63 | 3eqtr4d | |